On a theorem of Tartakowsky

By MICHAEL A. BENNETT (Vancouver)

Dedicated to the memory of Béla Brindza

Abstract

Binomial Thue equations of the shape $A a^{n}-B b^{n}=1$ possess, for A and B positive integers and $n \geq 3$, at most a single solution in positive integers a and b. In case $n \geq 4$ is even and $A=1$, an old result of Tartakowsky characterizes this solution, should it exist, in terms of the fundamental unit in $\mathbb{Q}(\sqrt{B})$. In this note, we extend this to certain values of $A>1$.

1. Introduction

If $F(x, y)$ is an irreducible binary form of degree $n \geq 3$, then the Thue equation

$$
F(x, y)=m
$$

has, for a fixed nonzero integer m, at most finitely many solutions which may, via a variety of techniques from the theory of Diophantine approximation, be effectively determined (see e.g. Tzanakis and De Weger [14]). In general, the number of such solutions may depend upon the degree of F, but, as proven by MuELLER and Schmidt [10], is bounded solely in terms of m and the number of monomials of F. In the special case where $m \leq 2$

Mathematics Subject Classification: Primary 11D41; Secondary 11D45, 11B37.
Key words and phrases: Thue equations, Frey curves.
Supported in part by a grant from NSERC.
and the number of monomials is minimal, we have the following recent theorem of the author's:

Theorem 1.1 ([2]). If A, B and n are nonzero integers with $n \geq 3$, then the inequality

$$
\left|A a^{n}-B b^{n}\right| \leq 2
$$

has at most one solution in positive integers (a, b).
In particular, an equation of the form

$$
\begin{equation*}
A a^{n}-B b^{n}=1 \tag{1.1}
\end{equation*}
$$

has, for fixed $A B \neq 0$ and $n \geq 3$, at most a single positive solution (a, b) (this is, in fact, the main result of [1]). This statement, while in some sense sharp, fails to precisely characterize the solutions that occur. Given the existence of a pair of integers (a, b) satisfying (1.1), for instance, it would be of some interest to determine their relationship with the structure of $\mathbb{Q}(\sqrt[n]{B / A})$, in particular with the fundamental unit(s) in the ring of integers of this field. A prototype of the result we have in mind is the following special case of a theorem of LJUNGGREN [9] (cf. Nagell [11]):

Theorem 1.2 (Ljunggren). If $A>1$ and B are positive integers, then if a and b are positive integers for which

$$
A a^{3}-B b^{3}=1
$$

we necessarily have that

$$
(a \sqrt[3]{A}-b \sqrt[3]{B})^{3}
$$

is either the fundamental unit or its square in the field $\mathbb{Q}(\sqrt[3]{A / B})$.
A like result was obtained earlier in the case $A=1$. For larger (even) values of n, where, additionally, we assume that $A=1$, we have a result stated by Tartakowsky [13] and proved by Af Ekenstam [6]:

Theorem 1.3 (Tartakowsky, Af Ekenstam). Let n and B be integers with $n \geq 2, B$ positive and nonsquare and $(n, B) \neq(2,7140)$. If there exist positive integers a and b such that

$$
\begin{equation*}
a^{2 n}-B b^{2 n}=1 \tag{1.2}
\end{equation*}
$$

then

$$
u_{1}=a^{n} \quad \text { and } \quad v_{1}=b^{n}
$$

If $(n, B)=(2,7140)$, then equation (1.2) has precisely one solution in positive integers, corresponding to

$$
u_{2}=239^{2} \quad \text { and } \quad v_{2}=26^{2}
$$

Here and subsequently, we define u_{1} and v_{1} to be the smallest positive integers such that $u_{1}^{2}-B v_{1}^{2}=1$ and set

$$
u_{k}+v_{k} \sqrt{B}=\left(u_{1}+v_{1} \sqrt{B}\right)^{k}
$$

Our goal in this paper is to consider the more general equation

$$
\begin{equation*}
M^{2} a^{2 n}-B b^{2 n}=1 \tag{1.3}
\end{equation*}
$$

In case $M=2^{n-1}$, an analogous result to Theorem 1.3 is noted without proof by LJungaren (as Theorem II of [8]). In [3], this is generalized to $M=2^{\alpha}$ for arbitrary nonnegative integer α. Here, we extend this result to (certain) larger values of M. Specifically, defining $P(M)$ to be the largest prime divisor of M, we prove

Theorem 1.4. Let M, n and B be positive integers with $M, n \geq 2$, B nonsquare and $P(M) \leq 13$. If there exist positive integers a and b satisfying (1.3), then either $u_{1}=M a^{n}$ and $v_{1}=b^{n}$, or one of $(M, n, B)=$ $(1,2,7140)$ or $(7,2,3)$. In these latter cases, we have $u_{2}=M a^{n}$ and $v_{2}=b^{n}$.

2. The case $n=2$

We begin our proof of Theorem 1.4 by treating the case $n=2$. Here, we will deduce something a bit stronger, generalizing Corollary 1.3 of [5] in the process:

Proposition 2.1. Let $M, B>1$ be squarefree integers with $P(M) \leq 13$. Then if there exist positive integers a and c satisfying the Diophantine equation

$$
\begin{equation*}
M^{2} a^{4}-B c^{2}=1 \tag{2.1}
\end{equation*}
$$

we necessarily have $M a^{2}=u_{k}$ with $k=1$ unless either $M=7$ (in which case $k=1$ or $k=2$, but not both) or

$$
\begin{equation*}
(M, B) \in\{(11,2),(26,3),(26,16383),(55,1139),(1001,571535)\} \tag{2.2}
\end{equation*}
$$

where we have $k=3$.
The aforementioned Corollary 1.3 of [5] is just the above result under the more restrictive assumption $P(M) \leq 11$. We will thus assume for the remainder of this section that $13 \mid M$. Our argument is similar to that given in [5]; we will suppress many of the details.

From Theorem 1.2 and Lemma 5.1 of [5], we have $M a^{2}=u_{k}$ with k a positive integral divisor of 420 . Since $u_{2 j}=2 u_{j}^{2}-1$ and $13 \mid M$, we may suppose that k is odd. Now, by the classical theory of Pell's equation, we have that

$$
u_{k}=T_{k}\left(u_{1}\right),
$$

where $T_{k}(x)$ denotes the k th Tschebyscheff polynomial (of the first kind), satisfying

$$
T_{k}(x)=\cos (k \arccos x)=x^{k}+\binom{k}{2} x^{k-2}\left(x^{2}-1\right)+\cdots
$$

for k a nonnegative integer. Since $T_{k_{1} k_{2}}(x)=T_{k_{1}}\left(T_{k_{2}}(x)\right)$ for positive integers k_{1} and k_{2}, to conclude as desired, we need only solve the Diophantine equations

$$
\begin{equation*}
T_{k}(x)=M a^{2}, \quad k \in\{3,5,7\} \tag{2.3}
\end{equation*}
$$

in integers x and a with $x>1$. If $k=5$ or $k=7$, we note that $T_{k}(x)=$ $x\left(16 x^{4}-20 x^{2}+5\right)$ or $x\left(64 x^{6}-112 x^{4}+56 x^{2}-7\right)$, respectively. Since

$$
\operatorname{gcd}\left(16 x^{4}-20 x^{2}+5,2 \cdot 3 \cdot 7 \cdot 11 \cdot 13\right)=1,
$$

in the first case, from (2.3), we necessarily have

$$
16 x^{4}-20 x^{2}+5=5^{\delta} u^{2}
$$

for some $u \in \mathbb{Z}$ and $\delta \in\{0,1\}$. Arguing as in the proof of Corollary 1.3 of [5] leads to a contradiction if $x>1$. In case $k=7$, since

$$
\operatorname{gcd}\left(64 x^{6}-112 x^{4}+56 x^{2}-7,2 \cdot 3 \cdot 5 \cdot 11 \cdot 13\right)=1
$$

it follows that

$$
64 x^{6}-112 x^{4}+56 x^{2}-7=7^{\delta} u^{2}
$$

again for $u \in \mathbb{Z}$ and $\delta \in\{0,1\}$. From the inequalities

$$
\left(8 x^{3}-7 x\right)^{2}<64 x^{6}-112 x^{4}+56 x^{2}-7<\left(8 x^{3}-7 x+1\right)^{2}
$$

valid for $x>1$, we may suppose that $\delta=1$ (so that $7 \mid x$). It follows that $7 \mid u^{2}+1$, again a contradiction.

Finally, if $k=3$, we are left to consider equations of the form

$$
x\left(4 x^{2}-3\right)=M a^{2}, \quad P(M) \leq 13 .
$$

Via (nowadays) routine computations using linear forms in elliptic logarithms and lattice basis reduction (as implemented, for example, in Magma), we find that the only solutions to these equations with $x>1$ correspond to

$$
x \in\{2,3,128,135,756\} .
$$

This, after a simple calculation, completes the proof of Proposition 2.1.
To apply this to Theorem 1.4 in case $n=2$, let us begin by supposing that there exist positive integers a and b such that

$$
\begin{equation*}
M^{2} a^{4}-B b^{4}=1 \tag{2.4}
\end{equation*}
$$

Writing $B=B_{0} B_{1}^{2}$ with B_{0} squarefree, we will, as previously, take u_{1} and v_{1} for the smallest positive integers with $u_{1}^{2}-B v_{1}^{2}=1$ and suppose that u_{1}^{*} and v_{1}^{*} are the smallest positive integers satisfying $\left(u_{i}^{*}\right)^{2}-B_{0}\left(v_{1}^{*}\right)^{2}=1$. From Proposition 2.1, it follows that $M a^{2}=u_{k}^{*}$ and $B_{1} b^{2}=v_{k}^{*}$ for $k \leq 3$. Since $u_{k}^{*} \leq u_{k}$ for all k, it remains to show that $k=1$. If $k=3$, from (2.2),

$$
M a^{2} \in\{26,99,8388224,9841095,1728322596\} .
$$

In each case, we find that $M^{2} a^{4}-1$ is fourth-power free, except if $M a^{2}=$ 9841095 where $16 \mid M^{2} a^{4}-1$. It follows that either B or $16 B$ is equal to $M^{2} a^{4}-1$, contradicting, in every case, $k>1$.

If $k=2$, then, from Proposition 2.1, we have $M=7$ and hence

$$
7 a^{2}=u_{2}^{*}=2\left(u_{1}^{*}\right)^{2}-1, \quad B_{1} b^{2}=v_{2}^{*}=2 u_{1}^{*} v_{1}^{*} .
$$

If $u_{1}^{*}<u_{1}$ then necessarily $7 a^{2}=u_{1}$, as desired. We may thus suppose that $u_{1}=u_{1}^{*}$ and hence that u_{1}^{*} is coprime to B_{1}. From the first of the above two equations, we may conclude that u_{1}^{*} is even whereby, from the second, $u_{1}^{*}=2 r^{2}$ for some integer r. The first equation then implies that

$$
8 r^{4}-7 a^{2}=1
$$

whence, from Proposition 2.1, $|a r|=1$. We thus have $B b^{4}=48$, as claimed.

3. Larger values of \boldsymbol{n}

Let us now suppose that $n \geq 3$ is prime. Let $\epsilon=u+v \sqrt{B}$ where u and v are positive integers (to be chosen later) with $u^{2}-B v^{2}=1$. Defining

$$
E_{k}=\frac{\epsilon^{k}-\epsilon^{-k}}{\epsilon-\epsilon^{-1}}
$$

if p is an odd positive integer, then we have the following identities:

$$
\begin{gather*}
\left(E_{\frac{p+1}{2}}-E_{\frac{p-1}{2}}\right)\left(E_{\frac{p+1}{2}}+E_{\frac{p-1}{2}}\right)=E_{p} \tag{3.1}\\
(u+1)\left(E_{\frac{p+1}{2}}-E_{\frac{p-1}{2}}\right)^{2}-(u-1)\left(E_{\frac{p+1}{2}}+E_{\frac{p-1}{2}}\right)^{2}=2 \tag{3.2}\\
(u+1)\left(E_{\frac{p+1}{2}}-E_{\frac{p-1}{2}}\right)^{2}+(u-1)\left(E_{\frac{p+1}{2}}+E_{\frac{p-1}{2}}\right)^{2}=\epsilon^{p}+\epsilon^{-p} \tag{3.3}
\end{gather*}
$$

If we suppose that there exist positive integers a and b with $M^{2} a^{2 n}-$ $B b^{2 n}=1$, we may write

$$
\begin{equation*}
M a^{n}+b^{n} \sqrt{B}=\left(u_{1}+v_{1} \sqrt{B}\right)^{m} \tag{3.4}
\end{equation*}
$$

for some positive integer m. We separate our proof into two cases, depending on whether or not m has an odd prime divisor p. If such a prime p exists, define

$$
\epsilon=a_{1}+b_{1} \sqrt{B}=\left(u_{1}+v_{1} \sqrt{B}\right)^{m / p}
$$

so that

$$
\begin{equation*}
M a^{n}+b^{n} \sqrt{B}=\left(a_{1}+b_{1} \sqrt{B}\right)^{p} \tag{3.5}
\end{equation*}
$$

Expanding via the binomial theorem and equating coefficients, we thus may write

$$
M a^{n}=a_{1} \cdot a_{2}, \quad b^{n}=b_{1} \cdot b_{2}
$$

where a_{2} and b_{2} are odd integers with

$$
\operatorname{gcd}\left(a_{1}, a_{2}\right), \operatorname{gcd}\left(b_{1}, b_{2}\right) \in\{1, p\}
$$

and neither a_{2} nor b_{2} divisible by p^{2}. It follows that there exists a positive integer s such that either $b_{1}=s^{n}$ or $b_{1}=p^{n-1} s^{n}$. In the first case, $E_{p}=(b / s)^{n}$ and so, from (3.1) and the fact that the two factors on the left hand side of (3.1) are coprime,

$$
E_{\frac{p+1}{2}}-E_{\frac{p-1}{2}}=P^{n} \quad \text { and } \quad E_{\frac{p+1}{2}}+E_{\frac{p-1}{2}}=Q^{n}
$$

for some positive integers P and Q. Equation (3.2) thus yields

$$
\left(a_{1}+1\right) P^{2 n}-\left(a_{1}-1\right) Q^{2 n}=2
$$

and so, via Theorem 1.1, $P=Q=1$, contradicting $p>1$.
We may thus suppose that $b_{1}=p^{n-1} s^{n}$ (so that, in particular, p fails to divide $a_{1} \cdot a_{2}$, whence a_{1} and a_{2} are coprime). Then we have $E_{p}=p y_{0}^{n}$ for some positive integer y_{0} and so (3.1) implies that

$$
E_{\frac{p+1}{2}} \pm E_{\frac{p-1}{2}}=p P^{n} \quad \text { and } \quad E_{\frac{p+1}{2}} \mp E_{\frac{p-1}{2}}=Q^{n}
$$

for P and Q positive integers. Applying (3.2) and (3.3), we thus have either
$\left(a_{1}+1\right) p^{2} P^{2 n}-\left(a_{1}-1\right) Q^{2 n}=2, \quad\left(a_{1}+1\right) p^{2} P^{2 n}+\left(a_{1}-1\right) Q^{2 n}=2 M a^{n}$
or
$\left(a_{1}+1\right) Q^{2 n}-\left(a_{1}-1\right) p^{2} P^{2 n}=2, \quad\left(a_{1}+1\right) Q^{2 n}+\left(a_{1}-1\right) p^{2} P^{2 n}=2 M a^{n}$.
It follows that

$$
2\left(a_{1} \pm 1\right) Q^{2 n} \mp 2=2 M a^{n} .
$$

If we suppose that $a_{1}=M r^{n}$, for some integer r, then

$$
\left|\left(M r^{n} \pm 1\right) Q^{2 n}-M a^{n}\right|=1
$$

whereby, applying Theorem 1.1, we have $Q=1, a=r$, again a contradiction.

Finally, if $a_{1} \neq M r^{n}$ for any integer r, then $\operatorname{gcd}\left(M, a_{2}\right)>1$. Since we assume that $P(M) \leq 13$, it follows that a_{2} has a prime divisor in the set $\{2,3,5,7,11,13\}$. As is well known, we may write

$$
\begin{equation*}
a_{1} \cdot a_{2}=T_{p}\left(a_{1}\right) \tag{3.6}
\end{equation*}
$$

where $T_{p}(x)$ is, again, the p th Tschebyscheff polynomial of the first kind. These satisfy the recursion

$$
T_{2 k+1}(x)=\left(4 x^{2}-2\right) T_{2 k-1}(x)-T_{2 k-3}(x),
$$

where $T_{1}(x)=x$ and $T_{3}(x)=4 x^{3}-3 x$. From this recursion, (3.6), and the fact that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, it is easy to check that a_{2} is coprime to 210 . For example, if we have $a_{1} \equiv \pm 1(\bmod 7)$, then $a_{2} \equiv 1(\bmod 7)$ for all odd p, while $a_{1} \equiv \pm 2(\bmod 7)$ implies that $a_{2} \equiv 1(\bmod 7)$ if $p \equiv \pm 1(\bmod 8)$, $a_{2} \equiv-1(\bmod 7)$ if $p \equiv \pm 3(\bmod 8)$. Finally, if $a_{1} \equiv \pm 3(\bmod 7)$, then $a_{2} \equiv 1(\bmod 7)$ unless $p=3\left(\right.$ whence $\left.a_{2} \equiv-2(\bmod 7)\right)$.

The situation modulo 11 or 13 is slightly more complicated. In each case, since p is an odd prime, we have, from the above recursion, that $11 \mid a_{2}$ or $13 \mid a_{2}$ only when $p=3$. In this case, $b_{2}=4 a_{1}^{2}-1=3 t^{n}$ for some integer t whereby, upon factoring, we deduce the existence of integers c and d for which $c^{n}-3 d^{n}=2$ with $|c d|=t$. It follows, from Theorem 1.1, that $t=1$, contradicting $a_{1}>1$.

We are thus left to treat equation (3.4) with $m=2^{\alpha}$ for α a nonnegative integer. Our claim will follow directly if we can show that $\alpha=0$. If $\alpha>0$, then there exist integers u and v for which

$$
M a^{n}+b^{n} \sqrt{B}=(u+v \sqrt{B})^{2}
$$

whereby

$$
\begin{equation*}
2 u^{2}-1=M a^{n} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 u v=b^{n} . \tag{3.8}
\end{equation*}
$$

The first of these equations implies, since we assume $3 \leq P(M) \leq 13$, that $M=7^{\beta}$ for some positive integer β.

Now either u is even, in which case, from (3.8), there exist integers l and w for which $u=2^{n-1} l^{n}, v=w^{n}$, or u is odd, whence $u=l^{n}$, $v=2^{n-1} w^{n}$. In the first of these cases, from (3.7), we conclude that

$$
2^{2 n-1} l^{2 n}-7^{\beta} a^{n}=1
$$

Arguing as in Kraus [7] (with minor complications at $n=5$ and $n=7$), this equation has no solutions with $n \geq 5$ prime. Modulo 7 , the same is true for $n=3$. In the second case, we have

$$
\begin{equation*}
2 l^{2 n}-7^{\beta} a^{n}=1 \tag{3.9}
\end{equation*}
$$

where l is an odd integer. To treat this equation, we consider the Frey curve

$$
E: Y^{2}=X^{3}+2 X^{2}+2 l^{2 n} X
$$

If p is a prime, coprime to $14 a l n$, define

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)
$$

For $n \geq 11$ is prime, applying techniques of [4], there exists a weight 2 , level 896 cuspidal newform $f=\sum c_{n} q^{n}$ such that, if p is a prime, again coprime to $14 a l n$, we have

$$
\begin{equation*}
\operatorname{Norm}_{K_{f} / \mathbb{Q}}\left(c_{p}-a_{p}\right) \equiv 0 \quad(\bmod n) \tag{3.10}
\end{equation*}
$$

Similarly, if $p \mid$ al but p fails to divide $14 n$,

$$
\begin{equation*}
\operatorname{Norm}_{K_{f} / \mathbb{Q}}\left(c_{p} \pm(p+1)\right) \equiv 0 \quad(\bmod n) \tag{3.11}
\end{equation*}
$$

From Stein's Modular Forms Database [12], we see that all the one dimensional forms at level 896 have $c_{3}=0$. A simple calculation shows that $a_{3}=2$ for our Frey curve, provided 3 fails to divide l and hence one of (3.10) or (3.11) implies that f is not one dimensional. For the higher dimensional forms labelled (in Stein's notation) $5-12$, we have $c_{3}=\theta$ with $\theta^{2} \pm 2 \theta-2=0$ or $\theta^{3} \pm 2 \theta^{2}-6 \theta \mp 8=0$. Calculating with (3.10) and (3.11) shows that necessarily $n=11$ and $3 \mid l a$. In this case, modulo 23 , we have that $11 \mid \beta$, contradicting Theorem 1.1 (since the equation $X^{11}-2 Y^{11}=1$ has no solutions with $|X Y|>1)$.

To deal with the remaining values of $n \in\{3,5,7\}$, we employ (mostly) local considerations. For example, equation (3.9) has no solutions modulo 7, provided $n=3$. For $n=5$, considering (3.9) modulo 11, we find that necessarily $5 \mid \beta$. Since the equation $X^{5}-2 Y^{5}=1$ has, by Theorem 1.1, no solutions in integers X and Y with $|X Y|>1$, this leads to a contradiction. If $n=7$, (3.9) is insoluble modulo 49 if $\beta \geq 2$. We are left then to deal with the Diophantine equation

$$
2 l^{14}-7 a^{7}=1
$$

Here, we may show that there are no local obstructions to solubility but employing, for instance, a "Thue-solver" such as that implemented in Magma, we find that there are, in fact no solutions in integers l and a. This completes the proof of Theorem 1.4.

4. Acknowledgements

The author would like to thank Wallapak Polasub for her insightful comments on an earlier version of this paper.

References

[1] M. A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation $\left|a x^{n}-b y^{n}\right|=1$, J. Reine Angew. Math. 535 (2001), 1-49.
[2] M. A. Bennett, The Diophantine inequality $\left|a x^{n}-b y^{n}\right| \leq 2$, submitted for publication.
[3] M. A. Bennett, Powers in recurrence sequences: Pell equations, Trans. Amer. Math. Soc. (to appear).
[4] M. A. Bennett and C. Skinner, Ternary Diophantine equations via Galois representations and modular forms, Canad. J. Math. 56 (2004), 23-54.
[5] M. A. Bennett and P. G. Walsh, The Diophantine equation $b^{2} x^{4}-d y^{2}=1$, Proc. Amer. Math. Soc. 127 (1999), 3481-3491.
[6] A. Af Ekenstam, Contributions to the Theory of the Diophantine equation $A x^{n}-B y^{n}=C$, Ph.D. Thesis, Uppsala, 1959.
[7] A. Kraus, Majorations effectives pour l'équation de Fermat qénéralisée, Canad. J. Math. 49, no. 6 (1997), 1139-1161.
[8] W. Ljunggren, A Diophantine equation with two unknowns, C. R. Dixième Congrès Math. Scandinaves 9146, 265-270.
[9] W. Ljunggren, On an improvement of a theorem of T. Nagell concerning the diophantine equation $A x^{3}+B y^{3}=C$, Math. Scan. 1 (1953), 297-309.
[10] J. Mueller and W. M. Schmidt, Trinomial Thue equations and inequalities, J. Reine Angew. Math. 379 (1987), 76-99.
[11] T. NAGELL, Solution complète de quelques équations cubiques à deux indéterminées, J. de Math. 4 (1925), 209-270.
[12] W. Stein, Modular forms database, http://modular.fas.harvard.edu/Tables/.
[13] W. Tartakowsky, Auflösung der Gleichung $x^{4}-\rho y^{4}=1$, Bull. de l'Académie des Sciences URSS 20 (1926), 310-324.
[14] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.

MICHAEL A. BENNETT
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, B.C., V6T 1Z2
CANADA
E-mail: bennett@math.ubc.ca
(Received July 9, 2004)

