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Introduction

Let L be a Lagrangian function on a C∞ manifold M . In the present
paper we are mainly concerned with an Euler–Lagrange equation of the
variation of

∫ t1
t0
L(x, ẋ)dt. Ei denotes a Lagrange operator such that

Ei(L) := dt(∂̇iL) − ∂iL and Ei(L) = 0 is the Euler–Lagrange equation for
L. Since 1966 A. Moór had studied a problem of the equivalence of some
types. In a case of order 1, his problem is as follows: If two given funda-
mental functions F (x, ẋ) and F ∗(x, ẋ) are related by Ei(F ∗) = λ(x)Ei(F ),
(or Ei(F ∗) = ϕk

i (x)Ek(F ) in succeeding papers) for every curve in the
space, that is, for any (x, ẋ), he called F and F ∗ equivalent and discussed
the problem under the assumption that F and F ∗ are (p)-homogeneous of
degree 1 and determined a relation between F and F ∗ ([2], [5] and [6]). Re-
cently M. Kirkovits was concerned with an analogous problem in regular
Lagrangian functions L(x, y) and L∗(x, y), and discussed an equivalence
of type Ei(L∗) = λ(x, y)Ei(L) for any (x, y) and concluded that λ must
be a constant and L∗ = λL + ∂iϕ + const., for some ϕ(x) ([3]). In the
present paper we study an equivalence problem of two regular Lagrangian
functions L and L∗ of the following type and obtain theorems below.

Definition. L and L∗ are called equivalent, denoted as L ∼ L∗, if
the solution curves of Ei(L) = 0 and Ei(L∗) = 0 locally coincide within a
parameter t at every point (x) and for every direction (y) on M .

This paper was presented at the Conference on Finsler Geometry and its Application
to Physics and Control Theory, August 26–31, 1991, Debrecen, Hungary.
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Theorem I. Let L and L∗ be Lagrangian functions such that there
exist Finslerian fundamental functions L and L∗ respectively and L =
Lp(x) and L∗ = L∗

p∗(x)
are satisfied, where p(x) and p∗(x) are C∞ and

never take values 1 and 0. Then L ∼ L∗ iff

F0
i
0 − F ∗0i

0 =
1

p(p− 1)
{
(λ− 1)L2pi − (2λ− 1)p0y

i
}

− 1
p∗(p∗ − 1)

{
(λ∗ − 1)L∗

2
p∗

i − (2λ∗ − 1)p∗0yi
}

where Fj
i
k are coefficients of the Cartan connection defined by L and

F0
i
0 = Fj

i
k yjyk and the same for symbols with ∗. (cf. Proposition 2.1)

Theorem II. In cases that L(x, y) is not assumed to be homogeneous,

we have L ∼ L(p) iff ys∂sL − G̃s∂̇sL = 0, where p is a real number not
equal to 1 and L+ (p− 1)‖∂̇L‖2 6= 0.

The author wishes to express his hearty thanks to Prof. L. Tamássy
for his kind advices to the revision of the paper, and also to Prof. M. Mat-
sumoto for his suggestions and encouragements.

1. Preliminaries

Terms and notations are mostly taken from [1] and [4]. Let M be
an n-dim. C∞ manifold. Mx denotes a tangent space to M at x in M .
We are concerned with a tangent bundle T 0(M) whose fibre at x consists
of only non-zero vectors at every point x in M. (xi, yi) denotes canonical
coordinates on T 0(M). A Lagrangian function L(x, y) which we study, is
a positive C∞ function on T 0(M) and assumed to be regular, i.e., rank
(g(1)

ij) = n throughout the paper, where g(1)
ij denotes ∂̇i∂̇jL. We adopt

abbreviations dt, ∂i and ∂̇i in place of d/dt, ∂/∂xi and ∂/∂yi. g(1)ij de-
notes the inverse of g(1)

ij . The Euler–Lagrange equation of the variational
problem of the integral

(1.1) J =
∫ t1

t0

L(x, ẋ)dt

with respect to curves x(t) is Ei(L) = 0, and from the regularity of g(1)
ij

it is equivalent to dt
2xi + G(1)i(x, dtx) = 0, where we put

(1.2) G(1)i := g(1)ij(ys(∂s∂̇jL)− ∂jL).

In this paper we identify parameter curves with their parameters, i.e.
we distinguish a curve from its parameter changed one. If x(t) satisfies
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Ei(L) = 0 we say that it is an extremal of a variational problem of (1.1)
of L, and if all extremals coincide with those of L∗ we have defined that
L ∼ L∗. Thus we have

Proposition 1.1. L ∼ L∗ iff G(1)i −G∗
(1)i

= 0 for any (x, y).

When (M, L) is a Finsler manifold if we put L = 1
2L2 according to

the usual manner, we have g(1)
ij = gij and G(1)i = 2Gi = F0

i
0, where Fj

i
k

comes from the Cartan connection CΓ (Fj
i
k, N i

k, Cj
i
k) of (M, L), defined

uniquely from conditions

(1.3)

gij|k = ∂kgij −Nr
k∂̇rgij − grjFi

r
k − girFj

r
k = 0

gij |k = ∂̇kgij − grjCi
r
k − girCj

r
k = 0

Fj
i
k = Fk

i
j , Cj

i
k = Ck

i
j and ysFs

i
j = N i

j

where | and | denote h- and v-covariant differentiations respectively [4].

2. Pointwise homogeneous Lagrangian
manifolds and an equivalence problem

A (p)-homogeneous function f(x, y) of degree p with respect to (y) is
defined as a function which satisfies f(x, ky) = kpf(x, y) for any positive
constant k, and there is a well known relation ys(∂̇sf) = pf , and a Finsler
fundamental function L(x, y) is in fact a (p)-homogeneous function with
respect to (y) of degree 1. We generalize the notion of (p)-homogeneity:

Definition 2.1. Let {M,L} be a Lagrangian manifold. L(x, y) on
T 0(M) is called pointwise (p)-homogeneous with a degree function p(x) if
it satisfies L(x, ky) = kp(x)L(x, y) for any positive constant k.

We are concerned with positive pointwise (p)-homogeneous Lagran-
gian functions such that there exists a (p)-homogeneous L(x, y) of degree
1, called an associated fundamental function for L such that L is expressed
as p(x)-th power of L ([1]); L(x, y) = (L(x, y))p(x). (M, L) is an associated
Finsler manifold. To preserve regularity we assume that p(x) is C∞ and
never takes 0 and 1 as its values. We denote simply Ḡ = Lp(x) and, if there
is no confusion, omit p(x) to avoid complications. We put successively,
Ḡi := ∂̇iḠ = pLp−1li and Ḡij := ∂̇i∂̇j Ḡ = pLp−2[gij + (p − 2)lilj ], where
li := ∂̇iL and gij is the metric tensor of the associated (M,L). Moreover
we define Ḡi as Ḡi := Ḡij(ys(∂sḠi) − ∂iḠ). We have the regularity from
det(Ḡij) and get the inverse.
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Lemma 2.1.

(1) det(Ḡij) = pnLn(p−2)(p− 1)det (gij)

(2) Ḡij =
1

pLp−2

[
gij − p− 2

p− 1
lilj

]
, li := gij lj

Proposition 2.1. G(p)i of {M,L}, L = Lp(x) is given as

(2.1) G(p)i = F0
i
0 +

1
p(p− 1)

{
(2λ− 1)p0y

i − (λ− 1)L2pi
}

where λ = 1 + (p− 1) log L, pi = ∂ip, pi = gijpj and p0 = psy
s

Proof. From (1.3) yi|j and L|j vanish with respect to CΓ of (M,L),
therefore we have

(2.2)
∂hḠ = Ḡ|h + F0

r
hḠr = phLp log L + F0

r
hḠr

ys∂sḠh = (1 + p log L)Lp−1p0lh + F0
r
0Ḡrh + ḠrFh

r
0 .

Paying attention to li = yi/L and substituting from (2) of lemma 2.1 and
(2.2) into the definition of Ḡi we get (2.1)

Referring to Proposition 2.1 we can consider that corresponding to
a Finsler manifold (M, L) there arises a family of pointwise homogeneous
Lagrangian manifolds {M,L} which have (M, L) as an associated Finsler
manifold. Though there may occur negative values of the Lagrangian
function, we formally put Ḡ = log L as in the case of p(x) = 0 [1] and
conclude just like above that Ḡij = L−2(gij − 2lilj).

Proposition 2.2. We have G(0)i = F0
i
0, for {M,L}, L = log L.

The proof of Theorem I. is now easy from Proposition 1.1 and
Proposition 2.1.

Corollary 2.1. Let L and L∗ have the same associated L, and p(x)
and q(x) be degree functions of L and L∗ respectively. Then L ∼ L∗ iff
pi/(p(p− 1)) = qi/(q(q − 1)).

Corollary 2.2. Let (M, L) be a Finsler manifold and L = Lp(x). Then
we have that L ∼ 1

2L2 ∼ log L iff p(x) is a constant 6= 0, 1.

Corollary 2.3. If L and L∗ are associated with L and L∗, and the
degree functions p and p∗ are constants not equal to 1, then we have that
L ∼ L∗ iff F0

i
0 − F ∗0i

0 = 0 where in the case that p or p∗ vanishes, L or
L∗ is regarded as log L or log L∗ respectively.
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3. Equivalence problems for non-homogeneous {M,L}
In this section we study the equivalence of general non-homogeneous

L. L is assumed to be C∞, positive and regular, that is, g(1)
ij is regular.

For simplicity we replace (1) on the right shoulder with a tilde on the
top hereafter. Let p be a constant nonzero real number. We put Li :=
∂̇iL, Li := g̃ijLj and ‖∂̇L‖2 := gijLiLj , and define g(p)

ij := ∂̇i∂̇jLp =
pLp−1[g̃ij + (p− 1)L−1LiLj ].

Lemma 3.1. The determinant and the inverse of g(p)
ij are given as

(1) det(g(p)
ij) = pnLn(p−1) det(g̃ij)

(
1 +

p− 1
L ‖∂̇L‖2

)

(2) If L+(p−1)‖∂̇L‖2 6= 0, then g(p)
ij is regular and the inverse is

(3.1) g(p)ij =
1

pLp−1

[
g̃ij − p− 1

L+ (p− 1)‖∂̇L‖2L
iLj

]
.

To include the case of p = 0, we put L(p) := Lp for p 6= 0 and
L(0) := log L.

Lemma 3.2.

(1) g(0)
ij = L−1(g̃ij − L−1LiLj)

(2) det(g(0)
ij) = L−n det(g̃ij)(1− L−1‖∂̇L‖2)

(3) If L− ‖∂̇L‖2 6= 0, g(0)
ij is regular and its inverse is given as

(3.2) g(0)ij = L
(

g̃ij +
1

L − ‖∂̇L‖2L
iLj

)
.

Proposition 3.1. If L+ (p− 1)‖∂̇L‖2 6= 0, for real p we have

(3.3) G(p)i = G̃i +
p− 1

L+ (p− 1)‖∂̇L‖2 (ys∂sL − G̃sLs)Li .

Proof. G(p)i := g(p)ij(ys∂s∂̇jL(p)−∂jL(p)) and Lemmas 3.1 ∼ 2 lead
us to (3.3).

The proof of Theorem II. now follows from Proposition 3.1. We
shall give other expressions of the above condition.
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Connection of Berwald type. Though it is not homogeneous, G̃i in-
duces a Berwald type connection on {M,L}. We put

(3.4) G̃i
j :=

1
2
∂̇jG

i and G̃j
i
k := ∂̇kGi

j

As it is easily verified, G̃i
j and G̃j

i
k obey the law of transformation

which must be satisfied by coefficients of connections under coordinate
transformations. Because of non-homogeneity of L, the Berwald type con-
nection B̃Γ (G̃j

i
k, G̃i

k) has non-homogeneous coefficients in (3.4). h- and
v-covariant differentiations with respect to B̃Γ are denoted with double
perpendicular bars. We put M and T as below and operate differentiations
on them successively.

(3.5) M := ys∂sL − G̃sLs and T := Lr(ysG̃r
s − G̃r)

Proposition 3.2. The following relations hold good

(1) M = ysL‖s + T ,

(2) ∂̇i(L‖j) = (∂̇iL)‖j
(3) ∂̇iM = 2L‖i, ∂̇iT = L‖i − ys(∂̇iL)‖s
(4) ∂̇i∂̇jM = 2∂̇j(L‖i),
(5) (∂̇jL)‖i = (∂̇iL)‖j
(6) ∂̇i∂̇jT = −ys{g̃ij‖s − G̃i

r
jsLr}, G̃i

r
jk := ∂̇kG̃i

r
j .

Theorem 3.2. The following conditions (1)–(3) are equivalent

(1) M = 0,

(2) L‖i = 0 and T = 0

(3) (∂̇iL)‖j = 0 and T = 0 .

The theorem is proved from Proposition 3.2.
Thus if M = 0 is satisfied, B̃Γ is metrical in the sense of (2), but

the following Theorem 3.3 shows that in the sense of gij‖k = 0, B̃Γ is not
metrical.

Theorem 3.3. If M = 0 is satisfied, we have: (4) gij‖k = G̃i
r
jkLr.

Finally an analogous consideration on a C∞ power function p(x) which
never takes values 0 and 1 leads to

Theorem 3.4. Lp(x) ∼ L iff (3.6) holds good

(3.6) (L logL)[L+ (p− 1)‖∂̇L‖2]pi = pKLi where

K := (p− 1)M +
1
p
JL, J := (1 + p logL)p0 + (p− 1) logL(psLs)
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[6] A. Mo�or, Über gewisse Type äquivalenter Variationsprobleme von einem Para-
meter, Ann. Polonici Math. 19 (1967), 107–113.

SHUN–ICHI HOJO
DEPARTMENT OF APPLIED MATH.
FACULTY OF SCIENCE
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