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Introduction

Let £ be a Lagrangian function on a C'°° manifold M. In the present
paper we are mainly concerned with an Euler-Lagrange equation of the

variation of ftil L(x,&)dt. &; denotes a Lagrange operator such that

Ei(L) :=di(0;L) — O;L and &;(L) = 0 is the Euler-Lagrange equation for
L. Since 1966 A. Moér had studied a problem of the equivalence of some
types. In a case of order 1, his problem is as follows: If two given funda-
mental functions F'(z,#) and F*(x, &) are related by & (F*) = Az)&(F),
(or E(F*) = ¢F(x)E(F) in succeeding papers) for every curve in the
space, that is, for any (z, %), he called F' and F* equivalent and discussed
the problem under the assumption that F' and F'* are (p)-homogeneous of
degree 1 and determined a relation between F' and F* ([2], [5] and [6]). Re-
cently M. KIRKOVITS was concerned with an analogous problem in regular
Lagrangian functions £(z,y) and L£*(z,y), and discussed an equivalence
of type &(L*) = Mz, y)& (L) for any (z,y) and concluded that A must
be a constant and L£* = AL + 9;¢p + const., for some p(z) ([3]). In the
present paper we study an equivalence problem of two regular Lagrangian
functions £ and L£* of the following type and obtain theorems below.

Definition. £ and L* are called equivalent, denoted as £ ~ L*, if
the solution curves of &(£) = 0 and &;(L*) = 0 locally coincide within a
parameter ¢ at every point (z) and for every direction (y) on M.
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Theorem I. Let £ and L* be Lagrangian functions such that there
exist Finslerian fundamental functions L and L* respectively and L =

7@ and £* = L* ) are satisfied, where p(x) and p*(x) are C*° and
never take values 1 and 0. Then L ~ L* iff

! (A= 1)L?p" — (2A — L)poy' }

p(p—1) {
- {0 e - e

7 * 7
Fo'o —Fo'o =

where F}'; are coefficients of the Cartan connection defined by L and
Fo'o = Fj% y/y* and the same for symbols with *. (cf. Proposition 2.1)

Theorem II. In cases that L(x,y) is not assumed to be homogeneous,
we have £ ~ L®) iff y*0sL — G*0sL = 0, where p is a real number not
equal to 1 and L + (p — 1)||0L||* # 0.

The author wishes to express his hearty thanks to Prof. L. TAMASSY
for his kind advices to the revision of the paper, and also to Prof. M. MAT-
suMOTO for his suggestions and encouragements.

1. Preliminaries

Terms and notations are mostly taken from [1] and [4]. Let M be
an n-dim. C'°*° manifold. M, denotes a tangent space to M at z in M.
We are concerned with a tangent bundle T°(M) whose fibre at x consists
of only non-zero vectors at every point x in M. (z%,y*) denotes canonical
coordinates on T9(M). A Lagrangian function £(x,y) which we study, is
a positive C* function on T°(M) and assumed to be regular, i.e., rank
(9M;;) = n throughout the paper, where g(Y);; denotes 9;9;L. We adopt
abbreviations d;, d; and 9; in place of d/dt, 9/0x" and 9/9y’. gV de-
notes the inverse of g(l)ij. The Euler-Lagrange equation of the variational
problem of the integral

(1.1) J:/MEQ@Mt

with respect to curves z(t) is &(L) = 0, and from the regularity of g(l)ij
it is equivalent to d;%z® + GMi(x, d;x) = 0, where we put

(1.2) G = gWid (y*(9,0,L£) — 9 L).

In this paper we identify parameter curves with their parameters, i.e.
we distinguish a curve from its parameter changed one. If x(t) satisfies
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&i(L) = 0 we say that it is an extremal of a variational problem of (1.1)
of £, and if all extremals coincide with those of £L* we have defined that
L ~ L*. Thus we have

(1)

Proposition 1.1. £ ~ £* iff GV — G*"" =0 for any (x, Y).

When (M, L) is a Finsler manifold if we put £ = %LQ according to
the usual manner, we have g(l)ij = g;; and GWi = 2G" = Fy'y, where Fj,
comes from the Cartan connection CI'(F;%, N%,C;%) of (M, L), defined
uniquely from conditions

Gijlk = Okgij — N0y i — 9ri Fi'x — 9irFj"s = 0
(1.3) Gijlk = Ongis — 9riCi"% — girCi"% = 0

where | and | denote h- and v-covariant differentiations respectively [4].

2. Pointwise homogeneous Lagrangian
manifolds and an equivalence problem

A (p)-homogeneous function f(z,y) of degree p with respect to (y) is
defined as a function which satisfies f(x, ky) = kP f(x,y) for any positive
constant k, and there is a well known relation y*(0sf) = pf, and a Finsler
fundamental function L(x,y) is in fact a (p)-homogeneous function with
respect to (y) of degree 1. We generalize the notion of (p)-homogeneity:

Definition 2.1. Let {M,L} be a Lagrangian manifold. L(z,y) on
TO(M) is called pointwise (p)-homogeneous with a degree function p(z) if
it satisfies £(z, ky) = kP(*) L(x,y) for any positive constant k.

We are concerned with positive pointwise (p)-homogeneous Lagran-
gian functions such that there exists a (p)-homogeneous L(x,y) of degree
1, called an associated fundamental function for £ such that L is expressed
as p(z)-th power of L ([1]); L(z,y) = (L(x,y))P®). (M, L) is an associated
Finsler manifold. To preserve regularity we assume that p(x) is C*>° and

never takes 0 and 1 as its values. We denote simply G = LP(*) and, if there
is no confusion, omit p(z) to avoid complications. We put successively,

5 T= OZQ_ = prilli and Q_Z-j = 6’1535 = pr*Q[gz-j + (p — 2)lzlj], where
l; == 3¢L and g;; is the metric tensor of the associated (M, L). Moreover
we define G* as G* := G (y*(05sG;) — 0;G). We have the regularity from
det(G;;) and get the inverse.
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Lemma 2.1.
(1) det(G;) = p"L™P=2)(p — 1)det (gi;)

o 1 g —9 4 3
() GV =-r g”——gijiﬁy 1= gl

Proposition 2.1. G of {M,L}, L= LP(*) js given as

(21) GV =R+ Iﬁ {@A=poy’ — (A= 1)L’}

where A =1+ (p —1)log L, p; = 9;p, p' = g”p; and py = psy*

PRrROOF. From (1.3) y%; and L; vanish with respect to CI" of (M, L),
therefore we have

G = Gn + Fo"nGr = pnLPlog L + Fy'1G,

(2.2) _ B _ _
y*8:sGn = (1 + plog L)LPpoly + Fo"0Gr + GrFi'o -

Paying attention to [* = y*/ 'L and substituting from (2) of lemma 2.1 and
(2.2) into the definition of G* we get (2.1)

Referring to Proposition 2.1 we can consider that corresponding to
a Finsler manifold (M, L) there arises a family of pointwise homogeneous
Lagrangian manifolds { M, £} which have (M, L) as an associated Finsler
manifold. Though there may occur negative values of the Lagrangian
function, we formally put G = log L as in the case of p(x) = 0 [1] and
conclude just like above that g_ij = L_Q(gij — 2l;5).

Proposition 2.2. We have GO = Fy’y, for {M,L}, L=1oglL.

THE PROOF OF THEOREM I. is now easy from Proposition 1.1 and
Proposition 2.1.

Corollary 2.1. Let £ and L* have the same associated L, and p(x)
and q(x) be degree functions of L and L* respectively. Then L ~ L* iff

pi/(p(p—1)) = q:/(q(q — 1)).

Corollary 2.2. Let (M, L) be a Finsler manifold and £ = LP®). Then
we have that £ ~ 1L? ~ log L iff p(z) is a constant # 0, 1.

Corollary 2.3. If L and L* are associated with L and L*, and the
degree functions p and p* are constants not equal to 1, then we have that
L~ L*iff Fy'y — F*y%9 = 0 where in the case that p or p* vanishes, L or
L* is regarded as log L or log L* respectively.
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3. Equivalence problems for non-homogeneous {M, L}

In this section we study the equivalence of general non-homogeneous
L. L is assumed to be C°°, positive and regular, that is, g(l)ij is regular.
For simplicity we replace (1) on the right shoulder with a tilde on the
top hereafter. Let p be a constant nonzero real number. We put £;

L, L' = GIL; and ||0L|? == g7 L;L;, and define g®P);; = 9;0; cp =
pLP gy + (0 — DLTLL).

Lemma 3.1. The determinant and the inverse of g(p)ij are given as
~ -1, .
(1) det(gsy) = e detziy) 1+ P 10c1?)

(2) IfLA(p—1)||0L|* # 0, then g'P);; is regular and the inverse is

3.1 (p)ij — { o . ﬁzﬁj] .
(31) Ve L T VTE

To include the case of p = 0, we put L®) := LP for p # 0 and
LO) :=log L.

Lemma 3.2.

(1) 9% =L7Gij — L7LLy)
(2) det(gVy) = L7 det(giy)(1 — LH|OL]?)
(3) IfL—||OL)? #0, g\9; is regular and its inverse is given as

.. .. 1 L
39 i — (~w 4 —.ﬁm) |
(3.2) g 99+ — e

Proposition 3.1. If £+ (p — 1)||0L||? # 0, for real p we have

, ~. p—1 ~ .
(3.3) G =G+ ——(y° 0L — G° L)L .
L+ (p—1)[oL]]?

Proor. G .= g(p)"'j(ysﬁsﬁ'jﬁ(p) —8j£(p)) and Lemmas 3.1 ~ 2 lead
us to (3.3).

THE PROOF OF THEOREM II. now follows from Proposition 3.1. We
shall give other expressions of the above condition.
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Connection of Berwald type. Though it is not homogeneous, G in-
duces a Berwald type connection on {M, L}. We put
- 1. ~ .
(3.4) G = §6jGZ and G,y := G
As it is easily verified, éij and éjik obey the law of transformation
which must be satisfied by coefficients of connections under coordinate
transformations. Because of non-homogeneity of £, the Berwald type con-

nection BI’ (éjik, (%) has non-homogeneous coefficients in (3.4). h- and

v-covariant differentiations with respect to BT are denoted with double
perpendicular bars. We put M and T as below and operate differentiations
on them successively.

(3.5) M :=y*9,L — G°L, and T := L, (y°G"s — G")

Proposition 3.2. The following relations hold good
(1) M=y Lys+T,
) 9i(Lyy) = (L))
) M =2Ly;,0,T = Ly — y*(0:L))s
4) (92(9JM = 26j(£||i):
) (9L)); = (L)
) 0:0;T = —y*{Gijis — Gi"3sLr},  GiTn = ORGiy .
Theorem 3.2. The following conditions (1)—(3) are equivalent
(1) M=o,
(2) Lj;=0andT =0
3) (0:L);=0andT =0.
The theorem is proved from Proposition 3.2.
Thus if M = 0 is satisfied, BI" is metrical in the sense of (2), but

the following Theorem 3.3 shows that in the sense of g;;, = 0, BT is not
metrical.

Theorem 3.3. If M = 0 is satisfied, we have: (4) g;j|r = Gi"jrLr.

Finally an analogous consideration on a C'* power function p(x) which
never takes values 0 and 1 leads to

Theorem 3.4. LP(®) ~ L iff (3.6) holds good
(3.6) (LlogL)[L+ (p—1)||0L||!]p" = pKL® where

1
K:=(p-1)M+ EJE’ J = (1+plog L)po + (p — 1)log L(p°Ls)



On the equivalence of variational problems and homogenity ... 59

References

[1] S. HoJo, On the determination of generalized Cartan connections and fundamental
functions of Finsler spaces, Tensor N. S. 35 (1981), 333-344.

[2] L. JAKAL, Uber &quivalente parameterinvariante Variationsprobleme erster Ord-
nung, Publ. Math., Debrecen 24 (1977), 139-149.

[3] M. KirkoviTs, On equivalence of variational problems and its geometrical back-
ground in Lagrange spaces, An. st. Uniw. “Al I. Cuza”, Iagi Mat. 35 (1989),
267-272.

[4] M. MaTsuMoTO, Foundations of Finsler geometry and special Finsler spaces, Kai-
seisha, Saitkawa 3-33-2, Otsu, Japan.

[5] A. MOOR, Uber dquivalente Variationsprobleme erster und zweiter Ordnung, J. fiir
reine und angewandte Math. 223 (1966), 131-137.

[6] A. MOOR, Uber gewisse Type aquivalenter Variationsprobleme von einem Para-
meter, Ann. Polonici Math. 19 (1967), 107-113.

SHUN-ICHI HOJO

DEPARTMENT OF APPLIED MATH.
FACULTY OF SCIENCE

KONAN UNIVERSITY

OKAMOTO 8-9-1
HIGASHINADA-KU, KOBE 658
JAPAN

(Received August 30, 1991; revised March 4, 1992)



