# On the irrationality of Cantor and Ahmes series 

By JAROSLAV HANČL (Ostrava) and ROBERT TIJDEMAN (Leiden)

To the memory of Béla Brindza


#### Abstract

Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of integers with $b_{n}>1$ for all $n$. We derive criteria for the (ir)rationality of the sum $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ in terms of the sequence $\left(\frac{b_{n}}{a_{n}}\right)_{n=1}^{\infty}$. We present refinements of criteria of Oppenheim, Erdős and Straus, and Tijdeman and Yuan. Furthermore we make some remarks on a similar approach to determine the (ir)rationality of sums $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$.


## 1. Introduction

In Sections 2 and 3 we consider series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ where $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ are sequences of integers with $a_{n}>1$ for all $n$. We assume that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are explicitly given and that $b_{n}=o\left(a_{n-1} a_{n}\right)$ as $n \rightarrow \infty$. We wonder how we can use the behaviour of the sequence $\left(r_{n}\right)_{n=1}^{\infty}$, where $r_{n}=b_{n} / a_{n}$ for all $n$, to decide whether $\alpha:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ is rational. Theorem 1 is a sharpening of results of Oppenheim [15] and Tijdeman and Yuan [19]. Theorem 2 is a simplification of a theorem of ERDŐs and Straus [11]. Together they make a useful test.

In Section 4 we wonder whether a similar approach works for convergent sequences $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$. Theorem 3 shows that even in case $b_{n}=1$
for all $n$ the fact that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ is an irrational number $\theta$ does not guarantee the irrationality of the sum $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$. We wonder whether the more severe condition $a_{n+1}-\theta a_{n} \rightarrow 0$ for some irrational number $\theta$ implies irrationality, but unfortunately we cannot answer the question.

The history of the developments is given in the various sections.

## 2. Limit points in case of Cantor series

Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of integers with $a_{n}>1$ for all $n$ such that $\alpha:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ converges. Put

$$
r_{n}=\frac{b_{n}}{a_{n}}, \quad R_{n}=\sum_{i=0}^{\infty} \frac{b_{n+i}}{a_{n} \ldots a_{n+i}} \quad(n=1,2, \ldots) .
$$

It is an easy observation that $\alpha$ is rational if $\frac{b_{n}}{a_{n}-1}$ is ultimately constant. In 1869 Cantor [6] showed that if $0 \leq b_{n}<a_{n}$ and for every positive integer $q$ there is a positive integer $n$ such that $q$ divides $a_{1} a_{2} \ldots a_{n}$, then $\alpha$ is irrational if and only if $b_{n}>0$ infinitely often and $b_{n}<a_{n}-1$ infinitely often. In 1954 Oppenheim [15] extended this result to sequences satisfying $\left|b_{n}\right|<a_{n}$ for all $n$. It also follows from his results that if $\alpha$ is rational, then all the limit points of $\left(r_{n}\right)$ are rational, and that, if $\alpha \in \mathbb{Q}$ and $\left(r_{n}\right)$ has an integer limit point $t$ (hence $t \in\{-1,0,1\}$ ), then $b_{n}=t\left(a_{n}-1\right)$ for all $n$ larger than some $n_{0}$. Cantor and Oppenheim found the results in connection with their studies of expansions of real numbers as sums of infinite series of rational numbers which now bear their names. A Cantor expansion of $\alpha$ is a series $\alpha:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$ with $0 \leq b_{n}<a_{n}$ for all $n$.

In 2002 Tijdeman and Yuan [19] showed that $\alpha \notin \mathbb{Q}$ under the more general condition that $b_{n}=O\left(a_{n}\right)$ as $n \rightarrow \infty$ and $\left(r_{n}\right)$ has an irrational limit point. In the present paper we prove the following improvement. By a denominator of a rational number $\alpha$ we mean the smallest positive integer $m$ such that $m \alpha$ is an integer. Furthermore $x(\bmod 1)$ denotes the number $y$ with $y-x \in \mathbb{Z}$ and $0 \leq y<1$.

Theorem 2.1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be sequences of integers with $a_{n}>1$ for all $n$ and $b_{n}=o\left(a_{n-1} a_{n}\right)$ as $n \rightarrow \infty$. Put $\alpha:=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}}$, $r_{n}=\frac{b_{n}}{a_{n}}, \quad R_{n}=\sum_{i=0}^{\infty} \frac{b_{n+i}}{a_{n} \ldots a_{n+i}}$ as $n=1,2, \ldots$. If $\alpha$ is rational, then all
the limit points of $\left(r_{n}(\bmod 1)\right)_{n=1}^{\infty}$ are rational numbers having the same denominator $u$.

It follows immediately from Theorem 2.1 that if $\alpha$ is rational then the sequence $\left(r_{n}(\bmod 1)\right)_{n=1}^{\infty}$ has only finitely many limit points. The following Cantor expansion shows that it can happen that all the possible values modulo 1 occur as limit points:

$$
\frac{1}{5}=\frac{1}{7}+\frac{4}{7 \cdot 12}+\frac{13}{7 \cdot 12 \cdot 17}+\frac{13}{7 \cdot 12 \cdot 17 \cdot 22}+\frac{5}{7 \cdot 12 \cdot 17 \cdot 22 \cdot 27}+\ldots
$$

where $\frac{b_{4 n}}{a_{4 n}} \rightarrow \frac{3}{5}, \frac{b_{4 n+1}}{a_{4 n+1}} \rightarrow \frac{1}{5}, \frac{b_{4 n+2}}{a_{4 n+2}} \rightarrow \frac{2}{5}, \frac{b_{4 n+3}}{a_{4 n+3}} \rightarrow \frac{4}{5}$ as $n \rightarrow \infty$. More generally, if $p$ is an odd prime and $g$ is a primitive root of $p$, then the Cantor expansion of $\frac{1}{p}$ as

$$
\frac{1}{p}=\sum_{n=1}^{\infty} \frac{b_{n}}{\prod_{i=1}^{n}(i p+g)}
$$

has the property that $\left(r_{n}\right)_{n=1}^{\infty}$ has $\frac{1}{p}, \frac{2}{p}, \ldots, \frac{p-1}{p}$ as limit points. On the other hand, the examples

$$
\frac{1}{5}=\frac{1}{6}+\frac{2}{6 \cdot 11}+\frac{3}{6 \cdot 11 \cdot 16}+\frac{4}{6 \cdot 11 \cdot 16 \cdot 21}+\frac{5}{6 \cdot 11 \cdot 16 \cdot 21 \cdot 26}+\ldots
$$

and

$$
\frac{1}{6}=\frac{1}{8}+\frac{4}{8 \cdot 11}-\frac{5}{8 \cdot 11 \cdot 14}+\frac{6}{8 \cdot 11 \cdot 14 \cdot 17}-\frac{7}{8 \cdot 11 \cdot 14 \cdot 17 \cdot 20}+\ldots
$$

show that it can also happen that $\left(r_{n}(\bmod 1)\right)$ does not assume all possible values and that $u$ does not equal the denominator of $\alpha$. In the latter case $q=6, u=3$.

Proof of Theorem 2.1. Suppose $\alpha$ is rational with denominator $q$. Then for $n=1,2, \ldots$

$$
\begin{align*}
q R_{n} & =q \sum_{i=0}^{\infty} \frac{b_{n+i}}{a_{n} \ldots a_{n+i}} \\
& =q \alpha a_{1} \ldots a_{n-1}-q \sum_{i=1}^{n-1} b_{i} a_{i+1} \ldots a_{n-1} \in \mathbb{Z} \tag{1}
\end{align*}
$$

By applying this argument to $R_{n}$ in place of $\alpha$, we find that if $q_{n}$ denotes the denominator of $R_{n}$ for $n=1,2, \ldots$, then $q_{m} \mid q_{n}$ whenever $n<m$. Hence $\left(q_{n}\right)_{n=1}^{\infty}$ is a non-increasing sequence of integers with limit $u$, say.

Let $0<\varepsilon<1 /(4 q)$. Let $n_{0}$ be so large that $u R_{n} \in \mathbb{Z}$ and $\left|\frac{b_{n}}{a_{n-1} a_{n}}\right|<\varepsilon$ for $n>n_{0}$. Then, for $n>n_{0}, u$ is the denominator of $R_{n}$ and

$$
\begin{equation*}
\left|R_{n}-\frac{b_{n}}{a_{n}}\right|<\varepsilon+\frac{\varepsilon}{a_{n}}+\frac{\varepsilon}{a_{n} a_{n+1}} \cdots \leq 2 \varepsilon<\frac{1}{2 q} . \tag{2}
\end{equation*}
$$

Thus all the limit points of the sequence $\left(r_{n}(\bmod 1)\right)_{n=1}^{\infty}$ are of the form $t / u$ where $t$ is an integer coprime to $u$.

Remarks. 1. The condition $b_{n}=o\left(a_{n-1} a_{n}\right)$ in Theorem 2.1 can be replaced with the condition $b_{n}=O\left(a_{n}\right)$ as $n \rightarrow \infty$. The proof requires a slight modification of formula (2).
2. If $d_{n}:=\operatorname{gcd}\left(q_{n}, a_{n+1}\right)$ then $q_{n+1}=q_{n} / d_{n}$. Therefore we have

$$
u=q /\left(\lim _{n \rightarrow \infty} \operatorname{gcd}\left(q, a_{1} a_{2} \ldots a_{n}\right)\right)
$$

In particular, if for every integer $q$ there exists an $n$ such that $q \mid a_{1} a_{2} \ldots a_{n}$ then we are certain that $u=1$, hence that all the limit points of the sequence $\left(r_{n}\right)_{n=1}^{\infty}$ are integers. This special case has been investigated thoroughly by CANTOR [6] and OPPENHEIM [15].

## 3. The order in which limit points are visited

For the rationality of $\alpha$ it does not suffice that all the limit points of the sequence $\left(r_{n}(\bmod 1)\right)_{n=1}^{\infty}$ are rationals with the same denominator. For example $e=\sum_{n=1}^{\infty} \frac{1}{n!}$ is irrational but the only limit point of ( $r_{n}$ $(\bmod 1))_{n=1}^{\infty}$ is 0 . Erdős and Straus [11] Lemma $2.29=$ Erdős and Straus [12] Theorem 2.1 gave the following criterion for the rationality of $\alpha$ : there exists a positive integer $B$ and a sequence of integers $\left(t_{n}\right)_{n=1}^{\infty}$ so that for all large $n$ we have

$$
\begin{equation*}
B b_{n}=t_{n} a_{n}-t_{n+1}, \quad\left|t_{n+1}\right|<a_{n} / 2 \tag{3}
\end{equation*}
$$

Suppose $\alpha$ is rational with denominator $q$. It follows from their proof that one may choose $B=q$ and $t_{n}$ as the integer nearest to $q \frac{b_{n}}{a_{n}}$. According to
(2) the integer $t_{n}$ equals $q R_{n}$ for $n>n_{0}$. Hence the recurrence relation $B b_{n}=t_{n} a_{n}-t_{n+1}$ becomes $b_{n}=R_{n} a_{n}-R_{n+1}$, but this relation follows immediately from the definition of $\left(R_{n}\right)_{n=1}^{\infty}$. The theorem of Erdős and Straus implies that the relation is crucial for the rationality of $\alpha$. The condition $\left|t_{n+1}\right|<a_{n} / 2$ is optional. We specify their theorem to a more practical criterion, omit the optional condition and adjust their proof.

Theorem 3.1. Let $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ be two sequences of integers with $a_{n}>1$ for all $n$ and $b_{n}=o\left(a_{n-1} a_{n}\right)$ as $n \rightarrow \infty$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}} \tag{4}
\end{equation*}
$$

is rational if and only if for some positive integer $q$ and all large $n$ the integers $t_{n}$ nearest to $q \frac{b_{n}}{a_{n}}$ satisfy

$$
\begin{equation*}
q b_{n}=t_{n} a_{n}-t_{n+1} . \tag{5}
\end{equation*}
$$

Proof. Assume that (5) holds for $n \geq \mathbb{N}$. Then

$$
q a_{1} \ldots a_{N-1} \sum_{n=1}^{\infty} \frac{b_{n}}{a_{1} \ldots a_{n}} \in \mathbb{Z}+\sum_{n=N}^{\infty} \frac{t_{n} a_{n}-t_{n+1}}{a_{N} \ldots a_{n}}=\mathbb{Z}+t_{N}=\mathbb{Z}
$$

So condition (5) is sufficient for the rationality of the series (4).
To prove the necessity we recall from the proof of Theorem 2.1 that $\left|R_{n}-\frac{b_{n}}{a_{n}}\right|<\frac{1}{2 q}$ for $n>n_{0}$. From the definition of $R_{n}$ we immediately see that $a_{n} R_{n}=b_{n}+R_{n+1}$ for all $n$. Choosing $t_{n}$ as the integer nearest to $q \frac{b_{n}}{a_{n}}$ we obtain that $t_{n}=q R_{n}$ and that (5) holds for $n \geq n_{0}$.

Theorems 2.1 and 3.1 provide the following test for the rationality of $\alpha$ given the values of $b_{n} / a_{n}=r_{n}$.

1. Determine the limit points of $\left(r_{n}(\bmod 1)\right)_{n=1}^{\infty}$ and check whether they all have the same denominator $u$. If not, then $\alpha \notin \mathbb{Q}$.
2. Let $s_{n}$ denote the integer nearest to $u r_{n}$ for all $n$. Check whether $u b_{n}=a_{n} s_{n}-s_{n+1}$ for all large $n$. If not, then $\alpha \notin \mathbb{Q}$. Otherwise $\alpha \in \mathbb{Q}$.

In the test $s_{n} / u$ is the simplified fraction $t_{n} / q$ for all large $n$.
Application 1. Suppose $a, b, c, d, e, f$ are integers with $a>0, b>0$ such that $a_{n}=a n^{2}+c n+e, b_{n}=b n^{2}+d n+f$ for all $n$. We wonder when
$\alpha \in \mathbb{Q}$. Since $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\frac{b}{a}$, we can choose $u=a$. The nearest integer to $a \frac{b_{n}}{a_{n}}$ is $b$ for large $n$. Hence $\alpha \in \mathbb{Q}$ if and only if $a\left(b n^{2}+d n+f\right)=$ $b\left(a n^{2}+c n+e\right)-b$ for all large $n$, that is, if $b c=a d$ and $b(e-1)=a f$.

Application 2. Suppose $a, b, c, d$ are integers with $a>0, b>0$ such that $a_{n}=a n^{2}+c, b_{n}=b n^{3}+d$ for all $n$. Since $\frac{b_{n}}{a_{n}}=\frac{b n}{a}+o(1)$, the limit points of $\left(r_{n}(\bmod 1)\right)$ are the multiples of $\frac{b}{a}$ considered modulo 1 . If $a>1$, then not all denominators are equal and $\alpha$ is irrational. If $a=1$, then $s_{n}=b n$ for all large $n$. Hence $\alpha \in \mathbb{Q}$ if and only if $b n^{3}+d=$ $b n\left(n^{2}+c\right)-b(n+1)$ for all large $n$, that is, if $c=1$ and $d=-b$.

Remark. If $b_{n}=o\left(a_{n-1} a_{n}\right)$ is not satisfied, then the above method may still be applicable. If there exist integers $c_{n}$ such that $R_{n}=\frac{c_{n}}{a_{n}}+o(1)$, then it suffices to replace $b_{n}$ in the test with $c_{n}$ and $r_{n}$ with $\frac{c_{n}}{a_{n}}$ for all $n$. See Hančl and Tijdeman [13], [14] and Tijdeman and Yuan [19] for conditions in case $b_{n}=o\left(a_{n-1} a_{n}\right)$ is not satisfied.

## 4. Limits of $a_{n+1} / a_{n}$ for Ahmes series

One may wonder whether the limit point approach is also applicable for series of the form $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$. To simplify matters we shall study the so-called Ahmes series $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ where the $a_{n}$ 's are positive integers such that the series converges. There are several irrationality results in case $\left(a_{n}\right)$ grows doubly exponential, see e.g. Erdős and Straus [10], SÁndor [18], BadEA [2], and Duverney [7], [8]. We would like to have irrationality results in case of simple exponential growth. Such results have been given for special sequences, e.g. by André-Jeannin [1], Borwein [3], [4], Borwein and Zhou [5], Duverney, Nishioka, Nishioka and Shiokawa [9] and Prévost [16], [17].

We wondered whether $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\theta$ with $\theta \notin \mathbb{Q}$ would imply irrationality of $\alpha$. The opposite is true as is shown by the following theorem.

Theorem 4.1. Let $\alpha, \theta \in \mathbb{R}, \alpha>0, \theta>1$. Then there exists an increasing sequence of positive integers $a_{1}, a_{2}, \ldots$ such that $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\alpha$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\theta$.

Proof. Put $\Delta_{0}=\alpha, a_{1}=\left[\frac{1}{\alpha}\right]+1, \Delta_{1}=\alpha-\frac{1}{a_{1}}$. Then $0<\Delta_{1}<\Delta_{0}$. We proceed by induction. Let $a_{n}$ and $\Delta_{n}$ be defined with $\Delta_{n}>0$. Put

$$
a_{n+1}=\max \left(\left[\frac{1}{\Delta_{n}}\right]+1, a_{n}+1\right), \quad \Delta_{n+1}=\Delta_{n}-\frac{1}{a_{n+1}}
$$

Then $0<\Delta_{n+1}<\Delta_{n}$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, there are infinitely many integers $n$ with $a_{n+1}-a_{n}>1$. Then $a_{n+1}-1 \leq \frac{1}{\Delta_{n}}<a_{n+1}$ and $\Delta_{n} \leq 1$, hence

$$
\Delta_{n+1}=\Delta_{n}-\frac{1}{a_{n+1}} \leq \Delta_{n}-\frac{\Delta_{n}}{\Delta_{n}+1}=\Delta_{n} \frac{\Delta_{n}}{\Delta_{n}+1} \leq \frac{1}{2} \Delta_{n}
$$

Thus there is an $N$ with $\Delta_{N}<\min \left(\frac{1}{\theta-1}, 1\right)$.
From $N$ on we change the choice of $a_{n}$ by choosing $a_{n+1}=\left[\frac{\theta}{\Delta_{n}(\theta-1)}\right]$, $\Delta_{n+1}=\Delta_{n}-\frac{1}{a_{n+1}}$. Since $\Delta_{n}<\frac{1}{\theta-1}$, we have $\frac{\theta}{\Delta_{n}(\theta-1)}-1>\frac{1}{\Delta_{n}}$ whence $a_{n+1}>\frac{1}{\Delta_{n}}$ and $\alpha-\sum_{j=1}^{n+1} \frac{1}{\alpha_{j}}=\Delta_{n+1}>0$. Therefore $a_{n+1}$ is a well-defined integer and $\sum_{n=1}^{\infty} \frac{1}{a_{n}} \leq \alpha$.

Next we show that $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\alpha$. We have, for $n \geq N$,

$$
\begin{equation*}
\Delta_{n+1}=\Delta_{n}-\frac{1}{a_{n+1}} \leq \Delta_{n}-\frac{\Delta_{n}(\theta-1)}{\theta}=\frac{\Delta_{n}}{\theta} \tag{6}
\end{equation*}
$$

Since $\theta>1$, this shows that $\alpha-\sum_{j=1}^{n} \frac{1}{a_{j}}=\Delta_{n} \rightarrow 0$ as $n \rightarrow \infty$ and therefore $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\alpha$.

We now check that $a_{n+1}>a_{n}$ for $n \geq N$. It suffices to show that $\frac{\theta}{\Delta_{n}(\theta-1)}-\frac{\theta}{\Delta_{n-1}(\theta-1)} \geq 1$. Indeed we have, by (6) and $\Delta_{n} \leq 1$,

$$
\frac{1}{\Delta_{n}}-\frac{1}{\Delta_{n-1}} \geq \frac{1}{\Delta_{n}}-\frac{1}{\theta \Delta_{n}} \geq \frac{\theta-1}{\theta}
$$

Finally we prove that $\frac{\Delta_{n+1}}{\Delta_{n}} \rightarrow \theta$ as $n \rightarrow \infty$. We know that $\Delta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence

$$
\begin{equation*}
\frac{a_{n+1}}{a_{n}}=\frac{\frac{\theta}{(\theta-1) \Delta_{n}}+O(1)}{\frac{\theta}{(\theta-1) \Delta_{n-1}}+O(1)}=\frac{\Delta_{n-1}(1+o(1))}{\Delta_{n}(1+o(1))} \geq \theta(1+o(1)) \tag{7}
\end{equation*}
$$

On the other hand,

$$
\Delta_{n+1}=\Delta_{n}-\frac{1}{a_{n+1}}>\Delta_{n}-\frac{1}{\frac{\theta}{\Delta_{n}(\theta-1)}-1}
$$

$$
\begin{aligned}
& =\Delta_{n}-\frac{\Delta_{n}(\theta-1)}{\theta}(1+o(1)) \\
& =\frac{\Delta_{n}}{\theta}(1+o(1))
\end{aligned}
$$

so that

$$
\frac{a_{n+1}}{a_{n}}=\frac{\Delta_{n-1}}{\Delta_{n}}(1+o(1)) \leq \theta(1+o(1))
$$

Thus $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\theta$.
A much more restrictive requirement also leading to simple exponential growth is that $a_{n+1}-\theta a_{n} \rightarrow 0$ as $n \rightarrow \infty$ for some irrational number $\theta$.

Open problem: Is it true that if $\left(a_{n}\right)_{n=1}^{\infty}$ is a sequence of positive integers such that $\alpha:=\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ is a rational number and $a_{n+1}-\theta a_{n} \rightarrow 0$ as $n \rightarrow \infty$ for some number $\theta$, then $\theta$ is an integer and $a_{n+1}=\theta a_{n}$ for all large $n$ ?

It is obvious that $\alpha \in \mathbb{Q}$ if $\frac{a_{n+1}}{a_{n}}=\theta \in \mathbb{Z}_{>1}$ for all large $n$. On the other hand there are many numbers $\theta$ for which no sequence of positive integers $\left(a_{n}\right)_{n=1}^{\infty}$ exists such that $a_{n+1}-\theta a_{n} \rightarrow 0$ (independently of the arithmetic character of $\alpha$ ). If $\theta \in \mathbb{Q} \backslash \mathbb{Z}$, then such a sequence cannot exist, since not all $a_{n}$ 's can be integers, and if $\theta a_{n}$ is not an integer, it cannot be close to an integer. Hence, also roots of rational numbers are excluded, even roots of integers which are not rational integers themselves such as $\sqrt{2}$ and $\sqrt[3]{3}$.

On the other hand, there exist algebraic numbers $\theta$ which admit such sequences. The set of numbers $\theta$ admitting an integer sequence $\left(a_{n}\right)_{n=1}^{\infty}$ with $a_{n+1}-\theta a_{n} \rightarrow 0$ as $n \rightarrow \infty$ comprises the Pisot numbers. A Pisot number is an algebraic integer $\gamma=\gamma_{1}$ all of whose conjugates $\gamma_{2}, \ldots, \gamma_{k}$ are less than 1 in absolute value. For example, by the theorem on symmetric functions the numbers $a_{n}:=\gamma_{1}^{n}+\gamma_{2}^{n}+\ldots \gamma_{k}^{n}$ are rational integers. Furthermore, $a_{n+1}-\gamma a_{n}=O\left(\max _{i>1}\left|\gamma_{i}\right|^{n}\right)$ which tends to 0 exponentially fast. The most famous sequences with a Pisot number limit ratio are the Fibonacci sequence $\left(F_{n}\right)$ and the Lucas sequence $\left(L_{n}\right)$. One has $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{L_{n+1}}{L_{n}}=\frac{1}{2}+\frac{1}{2} \sqrt{5}$. ANDRÉ-JEANNIN [1] showed in 1989 that $\sum_{n=1}^{\infty} \frac{1}{F_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{L_{n}}$ are irrational. Duverney, Nishioka, Nishioka and Shiokawa [9] proved by another method that $\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2 s}}$
and $\sum_{n=1}^{\infty} \frac{1}{L_{n}^{2 s}}$ are irrational for any positive integer $s$. In fact, they proved more general results on binary recurrence sequences. The result of AndréJeannin was further generalised by Prévost [16] and [17]. However, all these results concern only binary recurrence sequences with integer coefficients and therefore only quadratic irrational $\theta$. What about Pisot numbers of degree $>2$ ? The situation for transcendental numbers $\theta$ is totally obscure for us.

## References

[1] R. André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci., Série I, Math. 308 (1989), 539-541.
[2] C. Badea, The irrationality of certain infinite series, Glasgow Math. J. 29 (1987), 221-228.
[3] P. B. Borwein, On the irrationality of $\sum 1 /\left(q^{n}+r\right)$, J. Number Th. 37 (1991), 253-259.
[4] P. B. Borwein, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141-146.
[5] P. B. Borwein and P. Zhou, On the irrationality of a certain $q$ series, Proc. Amer. Math. Soc. 127 (1999), 1605-1613.
[6] G. Cantor, Über die einfachen Zahlensysteme, Zeit. für Math. 14 (1869), 121-128; Coll. Papers, Berlin, 1932, pp. 35-53.
[7] D. Duverney, Sur les séries de nombres rationnels à convergence rapide, C. R. Acad. Sci., Série I, Math. 328, no. 7 (1999), 553-556.
[8] D. Duverney, Irrationality of fast converging series of rational numbers, J. Math. Sci. Univ. Tokyo 8 (2001), 275-316.
[9] D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proc. Japan Acad., Ser. A 73, no. 7 (1997), 140-142.
[10] P. Erdős and E. G. Straus, On the irrationality of certain Ahmes series, J. Indian Math. Soc. 27 (1968), 129-133.
[11] P. Erdős and E. G. Straus, Some number theoretic problems, Pacific J. Math. 36 (1971), 635-646.
[12] P. Erdős and E. G. Straus, On the irrationality of certain series, Pacific J. Math. 55 (1974), 85-92.
[13] J. Hančl and R. Tijdeman, On the irrationality of Cantor series, J. reine angew. Math. 571 (2004), 145-158.
[14] J. Hančl and R. Tijdeman, On the irrationality of factorial series, http://www.math.leidenuniv.nl/~tijdeman/hanti3.ps.
[15] A. Oppenheim, Criteria for irrationality of certain classes of numbers, Amer. Math. Monthly 61 (1954), 235-241.
[16] M. Prévost, On the irrationality of $\sum \frac{t^{n}}{A \alpha^{n}+B \beta^{n}}$, J. Number Th. 73 (1998), 139-161.
[17] M. Prévost, Diophantine approximations using Padé approximations, J. Comput. Appl. Math. 122 (2000), 231-250.
[18] J. SÁndor, Some classes of irrational numbers, Studia Univ. Babes-Bolyai, Mathematica 29 (1984), 3-12.
[19] R. Tijdeman and P. Z. Yuan, On the rationality of Cantor and Ahmes series, Indag. Math., N. S. 13 (2002), 407-418.

```
JAROSLAV HANČL
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSTRAVA
DVOŘÁKOVA 7, 701 03 OSTRAVA 1
CZECH REPUBLIC
E-mail: hancl@osu.cz
ROBERT TIJDEMAN
MATHEMATISCH INSTITUUT
UNIVERSITEIT LEIDEN
NIELS BOHRWEG 1
POSTBUS 9512, 2300 RA LEIDEN
THE NETHERLANDS
E-mail: tijdeman@math.leidenuniv.nl
```

(Received May 27, 2004)

