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On the irrationality of Cantor and Ahmes series

By JAROSLAV HANČL (Ostrava) and ROBERT TIJDEMAN (Leiden)

To the memory of Béla Brindza

Abstract. Let (an)∞n=1 and (bn)∞n=1 be sequences of integers with bn > 1 for
all n. We derive criteria for the (ir)rationality of the sum

∑∞
n=1

bn

a1...an
in terms

of the sequence ( bn

an
)∞n=1. We present refinements of criteria of Oppenheim, Erdős

and Straus, and Tijdeman and Yuan. Furthermore we make some remarks on a
similar approach to determine the (ir)rationality of sums

∑∞
n=1

1
an

.

1. Introduction

In Sections 2 and 3 we consider series
∑∞

n=1
bn

a1...an
where (an)∞n=1 and

(bn)∞n=1 are sequences of integers with an > 1 for all n. We assume that
(an) and (bn) are explicitly given and that bn = o(an−1an) as n → ∞.
We wonder how we can use the behaviour of the sequence (rn)∞n=1, where
rn = bn/an for all n, to decide whether α :=

∑∞
n=1

bn
a1...an

is rational.
Theorem 1 is a sharpening of results of Oppenheim [15] and Tijdeman

and Yuan [19]. Theorem 2 is a simplification of a theorem of Erdős and
Straus [11]. Together they make a useful test.

In Section 4 we wonder whether a similar approach works for con-
vergent sequences

∑∞
n=1

bn
an

. Theorem 3 shows that even in case bn = 1
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for all n the fact that limn→∞
an+1

an
is an irrational number θ does not

guarantee the irrationality of the sum
∑∞

n=1
bn
an

. We wonder whether the
more severe condition an+1−θan → 0 for some irrational number θ implies
irrationality, but unfortunately we cannot answer the question.

The history of the developments is given in the various sections.

2. Limit points in case of Cantor series

Let (an)∞n=1 and (bn)∞n=1 be two sequences of integers with an > 1 for
all n such that α :=

∑∞
n=1

bn
a1...an

converges. Put

rn =
bn

an
, Rn =

∞∑

i=0

bn+i

an . . . an+i
(n = 1, 2, . . . ).

It is an easy observation that α is rational if bn
an−1 is ultimately constant.

In 1869 Cantor [6] showed that if 0 ≤ bn < an and for every positive
integer q there is a positive integer n such that q divides a1a2 . . . an, then
α is irrational if and only if bn > 0 infinitely often and bn < an−1 infinitely
often. In 1954 Oppenheim [15] extended this result to sequences satisfying
|bn| < an for all n. It also follows from his results that if α is rational,
then all the limit points of (rn) are rational, and that, if α ∈ Q and (rn)
has an integer limit point t (hence t ∈ {−1, 0, 1}), then bn = t(an − 1)
for all n larger than some n0. Cantor and Oppenheim found the results
in connection with their studies of expansions of real numbers as sums of
infinite series of rational numbers which now bear their names. A Cantor
expansion of α is a series α :=

∑∞
n=1

bn
a1...an

with 0 ≤ bn < an for all n.
In 2002 Tijdeman and Yuan [19] showed that α /∈ Q under the more

general condition that bn = O(an) as n → ∞ and (rn) has an irrational
limit point. In the present paper we prove the following improvement.
By a denominator of a rational number α we mean the smallest positive
integer m such that mα is an integer. Furthermore x (mod 1) denotes the
number y with y − x ∈ Z and 0 ≤ y < 1.

Theorem 2.1. Let (an)∞n=1 and (bn)∞n=1 be sequences of integers with

an > 1 for all n and bn = o(an−1an) as n → ∞. Put α :=
∑∞

n=1
bn

a1...an
,

rn = bn
an

, Rn =
∑∞

i=0
bn+i

an...an+i
as n = 1, 2, . . . . If α is rational, then all
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the limit points of (rn (mod 1))∞n=1 are rational numbers having the same

denominator u.

It follows immediately from Theorem 2.1 that if α is rational then
the sequence (rn (mod 1))∞n=1 has only finitely many limit points. The
following Cantor expansion shows that it can happen that all the possible
values modulo 1 occur as limit points:

1
5

=
1
7

+
4

7 · 12
+

13
7 · 12 · 17

+
13

7 · 12 · 17 · 22
+

5
7 · 12 · 17 · 22 · 27

+ . . .

where b4n
a4n

→ 3
5 , b4n+1

a4n+1
→ 1

5 , b4n+2

a4n+2
→ 2

5 , b4n+3

a4n+3
→ 4

5 as n → ∞. More
generally, if p is an odd prime and g is a primitive root of p, then the
Cantor expansion of 1

p as

1
p

=
∞∑

n=1

bn∏n
i=1(ip + g)

has the property that (rn)∞n=1 has 1
p , 2

p , . . . , p−1
p as limit points. On the

other hand, the examples

1
5

=
1
6

+
2

6 · 11
+

3
6 · 11 · 16

+
4

6 · 11 · 16 · 21
+

5
6 · 11 · 16 · 21 · 26

+ . . .

and

1
6

=
1
8

+
4

8 · 11
− 5

8 · 11 · 14
+

6
8 · 11 · 14 · 17

− 7
8 · 11 · 14 · 17 · 20

+ . . .

show that it can also happen that (rn (mod 1)) does not assume all pos-
sible values and that u does not equal the denominator of α. In the latter
case q = 6, u = 3.

Proof of Theorem 2.1. Suppose α is rational with denominator q.
Then for n = 1, 2, . . .

qRn = q
∞∑

i=0

bn+i

an . . . an+i

= qαa1 . . . an−1 − q
n−1∑

i=1

biai+1 . . . an−1 ∈ Z.

(1)
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By applying this argument to Rn in place of α, we find that if qn denotes
the denominator of Rn for n = 1, 2, . . . , then qm | qn whenever n < m.
Hence (qn)∞n=1 is a non-increasing sequence of integers with limit u, say.

Let 0 < ε < 1/(4q). Let n0 be so large that uRn ∈ Z and
∣∣ bn
an−1an

∣∣ < ε

for n > n0. Then, for n > n0, u is the denominator of Rn and
∣∣∣∣Rn − bn

an

∣∣∣∣ < ε +
ε

an
+

ε

anan+1
· · · ≤ 2ε <

1
2q

. (2)

Thus all the limit points of the sequence (rn (mod 1))∞n=1 are of the form
t/u where t is an integer coprime to u. ¤

Remarks. 1. The condition bn = o(an−1an) in Theorem 2.1 can be
replaced with the condition bn = O(an) as n → ∞. The proof requires a
slight modification of formula (2).

2. If dn := gcd(qn, an+1) then qn+1 = qn/dn. Therefore we have

u = q
/

( lim
n→∞ gcd(q, a1a2 . . . an)

)
.

In particular, if for every integer q there exists an n such that q | a1a2 . . . an

then we are certain that u = 1, hence that all the limit points of the
sequence (rn)∞n=1 are integers. This special case has been investigated
thoroughly by Cantor [6] and Oppenheim [15].

3. The order in which limit points are visited

For the rationality of α it does not suffice that all the limit points of
the sequence (rn (mod 1))∞n=1 are rationals with the same denominator.
For example e =

∑∞
n=1

1
n! is irrational but the only limit point of (rn

(mod 1))∞n=1 is 0. Erdős and Straus [11] Lemma 2.29 = Erdős and
Straus [12] Theorem 2.1 gave the following criterion for the rationality
of α: there exists a positive integer B and a sequence of integers (tn)∞n=1

so that for all large n we have

Bbn = tnan − tn+1, |tn+1| < an/2. (3)

Suppose α is rational with denominator q. It follows from their proof that
one may choose B = q and tn as the integer nearest to q bn

an
. According to
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(2) the integer tn equals qRn for n > n0. Hence the recurrence relation
Bbn = tnan − tn+1 becomes bn = Rnan − Rn+1, but this relation follows
immediately from the definition of (Rn)∞n=1. The theorem of Erdős and
Straus implies that the relation is crucial for the rationality of α. The
condition |tn+1| < an/2 is optional. We specify their theorem to a more
practical criterion, omit the optional condition and adjust their proof.

Theorem 3.1. Let (an)∞n=1 and (bn)∞n=1 be two sequences of integers

with an > 1 for all n and bn = o(an−1an) as n →∞. Then

∞∑

n=1

bn

a1 . . . an
(4)

is rational if and only if for some positive integer q and all large n the

integers tn nearest to q bn
an

satisfy

qbn = tnan − tn+1. (5)

Proof. Assume that (5) holds for n ≥ N. Then

qa1 . . . aN−1

∞∑

n=1

bn

a1 . . . an
∈ Z+

∞∑

n=N

tnan − tn+1

aN . . . an
= Z+ tN = Z.

So condition (5) is sufficient for the rationality of the series (4).
To prove the necessity we recall from the proof of Theorem 2.1 that

|Rn − bn
an
| < 1

2q for n > n0. From the definition of Rn we immediately see
that anRn = bn + Rn+1 for all n. Choosing tn as the integer nearest to
q bn

an
we obtain that tn = qRn and that (5) holds for n ≥ n0. ¤

Theorems 2.1 and 3.1 provide the following test for the rationality of
α given the values of bn/an = rn.

1. Determine the limit points of (rn (mod 1))∞n=1 and check whether
they all have the same denominator u. If not, then α /∈ Q.

2. Let sn denote the integer nearest to urn for all n. Check whether
ubn = ansn − sn+1 for all large n. If not, then α /∈ Q. Otherwise α ∈ Q.

In the test sn/u is the simplified fraction tn/q for all large n.

Application 1. Suppose a, b, c, d, e, f are integers with a > 0, b > 0
such that an = an2 + cn + e, bn = bn2 + dn + f for all n. We wonder when
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α ∈ Q. Since limn→∞ bn
an

= b
a , we can choose u = a. The nearest integer

to a bn
an

is b for large n. Hence α ∈ Q if and only if a(bn2 + dn + f) =
b(an2 + cn + e)− b for all large n, that is, if bc = ad and b(e− 1) = af .

Application 2. Suppose a, b, c, d are integers with a > 0, b > 0 such
that an = an2 + c, bn = bn3 + d for all n. Since bn

an
= bn

a + o(1), the
limit points of (rn (mod 1)) are the multiples of b

a considered modulo 1.
If a > 1, then not all denominators are equal and α is irrational. If a = 1,
then sn = bn for all large n. Hence α ∈ Q if and only if bn3 + d =
bn(n2 + c)− b(n + 1) for all large n, that is, if c = 1 and d = −b.

Remark. If bn = o(an−1an) is not satisfied, then the above method
may still be applicable. If there exist integers cn such that Rn = cn

an
+o(1),

then it suffices to replace bn in the test with cn and rn with cn
an

for all n.
See Hančl and Tijdeman [13], [14] and Tijdeman and Yuan [19] for
conditions in case bn = o(an−1an) is not satisfied.

4. Limits of an+1/an for Ahmes series

One may wonder whether the limit point approach is also applicable for
series of the form

∑∞
n=1

bn
an

. To simplify matters we shall study the so-called
Ahmes series

∑∞
n=1

1
an

where the an’s are positive integers such that the
series converges. There are several irrationality results in case (an) grows
doubly exponential, see e.g. Erdős and Straus [10], Sándor [18], Badea

[2], and Duverney [7], [8]. We would like to have irrationality results
in case of simple exponential growth. Such results have been given for
special sequences, e.g. by André-Jeannin [1], Borwein [3], [4], Borwein

and Zhou [5], Duverney, Nishioka, Nishioka and Shiokawa [9] and
Prévost [16], [17].

We wondered whether limn→∞
an+1

an
= θ with θ /∈ Q would imply irra-

tionality of α. The opposite is true as is shown by the following theorem.

Theorem 4.1. Let α, θ ∈ R, α > 0, θ > 1. Then there exists an

increasing sequence of positive integers a1, a2, . . . such that
∑∞

n=1
1

an
= α

and limn→∞
an+1

an
= θ.
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Proof. Put ∆0 = α, a1 =
[

1
α

]
+1, ∆1 = α− 1

a1
. Then 0 < ∆1 < ∆0.

We proceed by induction. Let an and ∆n be defined with ∆n > 0. Put

an+1 = max
([

1
∆n

]
+ 1, an + 1

)
, ∆n+1 = ∆n − 1

an+1
.

Then 0 < ∆n+1 < ∆n. Since
∑∞

n=1
1
n diverges, there are infinitely many

integers n with an+1 − an > 1. Then an+1 − 1 ≤ 1
∆n

< an+1 and ∆n ≤ 1,
hence

∆n+1 = ∆n − 1
an+1

≤ ∆n − ∆n

∆n + 1
= ∆n

∆n

∆n + 1
≤ 1

2
∆n.

Thus there is an N with ∆N < min( 1
θ−1 , 1).

From N on we change the choice of an by choosing an+1 =
[

θ
∆n(θ−1)

]
,

∆n+1 = ∆n − 1
an+1

. Since ∆n < 1
θ−1 , we have θ

∆n(θ−1) − 1 > 1
∆n

whence

an+1 > 1
∆n

and α−∑n+1
j=1

1
αj

= ∆n+1 > 0. Therefore an+1 is a well-defined
integer and

∑∞
n=1

1
an
≤ α.

Next we show that
∑∞

n=1
1

an
= α. We have, for n ≥ N ,

∆n+1 = ∆n − 1
an+1

≤ ∆n − ∆n(θ − 1)
θ

=
∆n

θ
. (6)

Since θ > 1, this shows that α − ∑n
j=1

1
aj

= ∆n → 0 as n → ∞ and
therefore

∑∞
n=1

1
an

= α.
We now check that an+1 > an for n ≥ N . It suffices to show that

θ
∆n(θ−1) − θ

∆n−1(θ−1) ≥ 1. Indeed we have, by (6) and ∆n ≤ 1,

1
∆n

− 1
∆n−1

≥ 1
∆n

− 1
θ∆n

≥ θ − 1
θ

.

Finally we prove that ∆n+1

∆n
→ θ as n →∞. We know that ∆n → 0 as

n →∞. Hence

an+1

an
=

θ
(θ−1)∆n

+ O(1)
θ

(θ−1)∆n−1
+ O(1)

=
∆n−1(1 + o(1))
∆n(1 + o(1))

≥ θ(1 + o(1)). (7)

On the other hand,

∆n+1 = ∆n − 1
an+1

> ∆n − 1
θ

∆n(θ−1) − 1
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= ∆n − ∆n(θ − 1)
θ

(1 + o(1))

=
∆n

θ
(1 + o(1))

so that
an+1

an
=

∆n−1

∆n
(1 + o(1)) ≤ θ(1 + o(1)).

Thus limn→∞
an+1

an
= θ. ¤

A much more restrictive requirement also leading to simple exponential
growth is that an+1 − θan → 0 as n →∞ for some irrational number θ.

Open problem: Is it true that if (an)∞n=1 is a sequence of positive
integers such that α :=

∑∞
n=1

1
an

is a rational number and an+1− θan → 0
as n →∞ for some number θ, then θ is an integer and an+1 = θan for all
large n?

It is obvious that α ∈ Q if an+1

an
= θ ∈ Z>1 for all large n. On the other

hand there are many numbers θ for which no sequence of positive integers
(an)∞n=1 exists such that an+1 − θan → 0 (independently of the arithmetic
character of α). If θ ∈ Q \ Z, then such a sequence cannot exist, since not
all an’s can be integers, and if θan is not an integer, it cannot be close to
an integer. Hence, also roots of rational numbers are excluded, even roots
of integers which are not rational integers themselves such as

√
2 and 3

√
3.

On the other hand, there exist algebraic numbers θ which admit such
sequences. The set of numbers θ admitting an integer sequence (an)∞n=1

with an+1 − θan → 0 as n → ∞ comprises the Pisot numbers. A Pisot
number is an algebraic integer γ = γ1 all of whose conjugates γ2, . . . , γk

are less than 1 in absolute value. For example, by the theorem on sym-
metric functions the numbers an := γn

1 + γn
2 + . . . γn

k are rational integers.
Furthermore, an+1 − γan = O(maxi>1 |γi|n) which tends to 0 exponen-
tially fast. The most famous sequences with a Pisot number limit ratio
are the Fibonacci sequence (Fn) and the Lucas sequence (Ln). One has
limn→∞

Fn+1

Fn
= limn→∞

Ln+1

Ln
= 1

2 + 1
2

√
5. André-Jeannin [1] showed in

1989 that
∑∞

n=1
1

Fn
and

∑∞
n=1

1
Ln

are irrational. Duverney, Nishioka,

Nishioka and Shiokawa [9] proved by another method that
∑∞

n=1
1

F 2s
n
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and
∑∞

n=1
1

L2s
n

are irrational for any positive integer s. In fact, they proved
more general results on binary recurrence sequences. The result of André-

Jeannin was further generalised by Prévost [16] and [17]. However, all
these results concern only binary recurrence sequences with integer coeffi-
cients and therefore only quadratic irrational θ. What about Pisot num-
bers of degree > 2? The situation for transcendental numbers θ is totally
obscure for us.
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