
Publ. Math. Debrecen
65/3-4 (2004), 497–512

Diophantine applications of Bennett’s abc theorem

By P. GARY WALSH (Ottawa)

This paper is dedicated to the memory of Professor Béla Brindza

Abstract. The purpose of this paper is to survey some Diophantine appli-
cations of a theorem of M. A. Bennett on systems of simultaneous Pell equations.
One of the more notable consequences concerns Schäffer’s equation 1k +2k + · · ·+
xk = yn, which was of great interest to Professor Brindza, as he proved some
astonishing results concerning the solvability of this equation.

1. Introduction

A topic of great interest to Professor Brindza concerns a conjecture
of Schäffer, which attempts to describe explicitly the set of integer solutions
to the equation 1k + 2k + · · · + xk = yn. Seemingly unrelated to this
is a rather innocent theorem of M. A. Bennett. Bennett [Bennett98]
proved several remarkable results concerning the solvability of systems
of simultaneous Pell equations, most notably being that any system of
simultaneous Pell equations of the form

x2 − ay2 = 1, z2 − by2 = 1,
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with a, b fixed positive integers, has at most three solutions in positive in-
tegers x, y, z. From the methods underlying this work, Bennett developed
the tools to prove a very powerful, yet innocent looking result for a certain
related type of system of simultaneous Pell equations. Before describing
this result, we digress back in time to a beautiful theorem of Wilhelm
Ljunggren.

In [Ljung42], Ljunggren proved that for any nonsquare positive in-
teger d, the quartic equation X4 − dY 2 = 1 has at most two solutions
in positive integers X, Y . The argument Ljunggren gives uses an intri-
cate construction involving units in quartic number fields, together with
a remarkable application of Skolem’s p-adic method. A close look at this
proof shows that Ljunggren actually proved the following rather curious
result in order to arrive at his theorem. The interested reader is referred
to [Walsh00] for details of the proof.

Theorem 1.1. Let a and c denote positive integers, then there is at

most one triple of positive integers x,y, z with the property that ax2, y2,

cz2 are (ascending) consecutive integers.

In the problem session of the Fifth Conference of the Canadian Num-
ber Theory Association, Herman J. J. te Riele posed the following problem:

When I became 49, I realized that this square is preceded by 3 times a
square and followed by 2 times a square. Are there more (nontrivial) such
squares?

Evidently, te Riele’s question is answered in the negative by the formu-
lation of Ljunggren’s theorem given above. Nevertheless, te Riele’s ques-
tion seemed to provide the impetus for further work along these lines, and
consequently Bennett [Bennett99] proved the following generalization.

Theorem 1.2. Let a, b and c denote positive integers, then there is

at most one triple of positive integers x,y, z with the property that ax2,

by2, cz2 are (ascending) consecutive integers.

This rather innocent looking statement provides the basis to improve
upon a considerable number of results in the literature. We will endeavour
to describe these applications in this article. Most of the applications we
present are actually consequences of Theorem 2.1, given below, which is
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a more refined statement than Theorem 1.2, and easily amenable to the
applications we shall discuss.

2. A generalization of a theorem of Cohn and Ljunggren
on X4 − dY 2 = 1

In [Cohn97], Cohn refined Ljunggren’s theorem on the equation X4−
dY 2 = 1. In particular, he employed a clever manipulation of Jacobi sym-
bols evaluations to prove that for d > 0 squarefree, d 6= 1785, the quartic
equation X4−dY 2 = 1 has at most one solution in positive integers X, Y ,
and if a solution exists, then it must come from the minimal unit greater
than one in Z[

√
d ] of norm 1, or its square.

Using Theorem 1.2, the following result was proved in [BenWal99]. We
first require some notation. For a nonsquare positive integer d, we denote
by εd = T + U

√
d the minimal unit greater than one in Z[

√
d ] of norm 1,

and for k ≥ 0 we set Tk + Uk

√
d = εk

d. For a positive integer b, we define
the rank of apparition, β(b), of b in {Tk} to be the minimal index k for
which b divides Tk, with the convention that β(b) = ∞ if no such index k

exists.

Theorem 2.1. Let b > 1 and d > 1 denote squarefree positive inte-

gers. If Tk = bx2 for some integer x, then k = β(b). Consequently, the

Diophantine equation

b2X4 − dY 2 = 1

has at most one solution in positive integers X, Y , and such a solution can

be given explicitly in terms of εd.

One can immediately see the usefulness of this result by considering
small values of b. Cohn’s theorem states that if Tk = X2 for some integer
X, then k = 1 or k = 2. For b ∈ {2, 3, 5, 6}, it is not difficult to see that
Theorem 2.1 implies that the equation Tk = bX2 implies k = 1. In fact,
pursuing this a little further one can deduce the following.

Corollary 2.1. Let b = 2r3s5t7u11v for some integers r, s, t, u, v ∈
{0, 1}, not all zero. Then any solution of Tk = bX2 with X ∈ Z implies
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k = 1, unless

(i) b = 7, in which case k = 1 or k = 2 (but not both)

(ii) (b, d) = (11, 2), in which case T3 = 11 · 32

(iii) (b, d) = (55, 1139), in which case T3 = 55 · 4232.

Furthermore, given any squarefree positive integer b > 1 there is an ef-

fective computable constant C = C(b), depending only on b, such that

if d > C and Tk = bX2 for some X ∈ Z, then k = 1 or k = 2.

Before proceeding to the next section, we discuss another immediate
application of Theorem 2.1 in connection to integer points on a family of
hyperelliptic curves determined by Tschebyscheff polynomials.

For n ≥ 1, define a sequence of polynomials

Pn(x) =
T2n+1(x)

x
,

where Tm(x) is the m-th Tchebyscheff polynomial satisfying

Tm(x) = xm +
(

m

2

)
xm−2(x2 − 1) +

(
m

4

)
xm−4(x2 − 1)2 + · · · ,

or alternatively,

Tm(x) =
1
2

(
(x +

√
x2 − 1 )m + (x−

√
x2 − 1 )m

)
.

We consider the family of hyperelliptic curves Cn defined by

Cn : y2 = Pn(x),

which for n ≥ 1 is evidently a curve of genus n− 1. A classical theorem of
Siegel implies that for each n ≥ 2, there are only a finite number of integer
points (x, y) on Cn. Theorem 2.1 provides a much sharper result.

Corollary 2.2. For n ≥ 1, the only integer points on Cn are (x, y) =
(1,±1), and also if n = (s2 − 1)/2 for some integer s, the points (x, y) =
(0,±s).

It is worth noting that each Pn(x) is an even polynomial, i.e. that
Pn(

√
x ) is a polynomial, and moreover, that the problem of determining

all integer points on y2 = Pn(
√

x ) remains unsolved, apart from certain
special cases. The interested reader is referred to Section 2.3 of [Walsh00]
for more on this problem, and its relation to quartic equations of the form
aX4 − bY 2 = 1, with a > 1 and nonsquare.
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3. Generalizations of a theorem of Ljunggren

Ljunggren’s work receives considerable coverage in the classical text
of Mordell [Mordell69] on Diophantine equations, but perhaps his most
remarkable result covered in Mordell’s book appears as Theorem 9 on
p. 270 (for the original work, the reader is referred to [Ljung36]). The
theorem is stated in [Mordell69] as follows.

Theorem 3.1. The equation

X2 − dY 4 = 1,

where d > 0 and is not a perfect square, has at most two solutions in

positive integers. Denote by αd the fundamental unit in the ring of integers

of the quadratic field Q(
√

d ). If there are two solutions, these are given

by either

X + Y 2
√

d = αd, α
2
d or by X + Y 2

√
d = αd, α

4
d,

the latter occurring for only a finite number of values of d.

There is evidently numerous ways in which one would wish to refine or
generalize this beautiful theorem. In this section we discuss various such
improvements, and their application to the resolution of certain parametric
families of Thue equations.

We first state a result which refines Theorem 3.1, and whose proof
makes use of Cohn’s aforementioned result on the equation X4−dY 2 = 1.
We retain the notation from the previous section.

Proposition 3.1. Let b and d > 1 denote squarefree positive integers,

and Tk + Uk

√
d = εk

d for k ≥ 1. There is at most one index k for which

Uk = bX2 for some integer X, except in the following two cases:

(i) T1 = 2t2 and U1 = by2 for some integers t and y, in which case

there is the second solution U2 = b(2ty)2.

(ii) T = 169, in which case U1 and U4 are both squares for d = 1785.

This proposition suffers from the shortcoming that for a given inte-
ger b, it does not give explicit information on the index k for a solution of
the equation Uk = bX2, which was an important aspect of Theorem 2.1.
Some progress along these lines was proved by Mignotte and Pethő in
[MigPet93]. In particular, they proved the following.
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Theorem 3.2. Let d denote a nonsquare positive integer such that

εd = T + u2
√

d for some integers T and u. A solution to Uk = bX2 for

b ∈ {1, 2, 3, 6}, with x ∈ Z, implies k ≤ 3, except only when T = 169, in

which case k = 4.

The following represents a refinement of Theorem 3.1, and was proved
in [Walsh98] as a consequence of Theorem 2.1.

Theorem 3.3. Let d denote a nonsquare positive integer such that

εd = T + u2
√

d for some integers T and u. Assume that Uk = bX2 for

some b ∈ {1, 2, 3, 5, 6, 10}, and x ∈ Z. Then k ≤ 2, except in the following

cases.

(i) T = 169, in which case U4 is a square.

(ii) 3 divides u and 4T 2 − 1 = 3y2 for some integer y, in which case

U3 = 3(uy)2.

(iii) (b, d) = (5, 24), in which case U4 = 5 · 142.

A general result on the index k for solutions to Uk = bX2, which would
be completely analogous to Theorem 2.1, remains elusive. Conjecture 1
in [Walsh98] provides what is almost certainly the correct statement, but
Theorem 2.1 can only be used to prove the following partial result. For
a given positive integer b, and sequence {Uk}, defined earlier, we let α(b)
denote the minimal index k for which b divides Uk.

Theorem 3.4. If α(b) is even, then the only possible solution to Uk =
bX2, for some integer X, is k = α(b), except in the case that 2T 2

1 − 1 = v2

and TU = bu2 for some integers u, v, in which case U4 = b(2uv)2 = U2α(b).

We now turn our attention to some refinements of Theorem 3.1 which
lead to the complete solution of certain quartic Thue equations that have
been considered in the work of Cusick [Cusick92], Cohn [Cohn95], and
Stroeker [Stroeker89]. Once again the results obtained are made possible
by Theorem 2.1.

Let k denote a positive integer. In [Cusick92], Cusick determined all
integer solutions to the family of Thue equations x4−kx2y2 +y4 = 1. This
was extended by Cohn [Cohn95] to equations of the form x2−kxy2+y4 = c

for c ∈ {±1,±2,±4}, but with the assumption that k is odd for c = 1
and c = 4. The following refinement of Theorem 3.1, which appeared in



Bennett’s abc theorem 503

[Walsh99], is proved using Theorem 2.1, and this refinement yields Cohn’s
result without the extra assumption that k must be odd.

Theorem 3.5. Let d be a nonsquare positive integer. Then there are

at most two positive indices k for which Uk = 2δX2, with X an integer

and δ = 0 or 1, and if two such indices k1 < k2 exist, then k1 = 1 and

k2 = 2, unless d ∈ {1785, 7140, 28560}, in which case the only solutions to

Uk = 2δX2 are k = 1, 2, 4.

As a consequence of this theorem, we obtained in [Walsh99] the fol-
lowing complete solution to the cases left open by Cohn in [Cohn95].

Corollary 3.1. Let k be an even positive integer.

1. The only solutions to x2 − kxy2 + y4 = 1 in non-negative integers

(x, y) are (k, 1), (1, 0), (0, 1), unless either k is a perfect square, in which

case there are also the solutions (1,
√

k ), (k2−1,
√

k ), or k = 338 in which

there are the solutions (x, y) = (114243, 6214), (13051348805, 6214).
2. The equation x2−kxy2+y4 = 4 has only the solution (x, y) = (2, 0),

unless k = 2v2 for some integer v, in which case there are also the solutions

(2,
√

2k ), (2k2 − 2,
√

2k ).

We finish off this section by exhibiting yet another application of The-
orem 2.1 to quartic Thue equations, which provides an improved com-
putational approach to solving a family of Thue equations considered by
Stroeker [Stroeker89].

In [Stroeker89], Stroeker describes a method to solve Thue equations
of the form

X4 − 2rX2Y 2 − sY 4 = 1.

This method is somewhat ad hoc, and in fact fails to work in many in-
stances, as the method requires that the coefficients r and s satisfy certain
congruence conditions, and moreover, the method requires that certain
technical conditions hold during the course of the algorithm. Using Theo-
rem 2.1, we can get around both of these issues completely, provide a much
simpler algorithm to solve any equation in the above family, and moreover,
the method will solve the more general family of equations

X2 − 2rXY 2 − sY 4 = 1.
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The main point to be raised here is that in Theorem 3.1, Ljunggren
needs to make the assumption that two solutions exist in order to get
information on the indices corresponding to these solutions. The main
point of the following refinement of Theorem 3.1 is to pin down where a
solution can occur in the case that only one solution exists. As mentioned
earlier, the proof uses Theorem 2.1, but also more recent work of the F.

Luca and author [LucaWal01]. The result appears in [Walsh02].

In what follows, let r, s be the integers, and D = r2 + s.

Theorem 3.6. 1. There are at most two positive integer solutions

(X,Y ) to X2 − DY 4 = 1. If two solutions Y1 < Y2 exist, then Y 2
1 = U1

and Y 2
2 = U2, except only if D = 1785 or D = 16 · 1785, in which case

Y 2
1 = U1 and Y 2

2 = U4.

2. If only one positive integer solution (X, Y ) to X2−DY 4 = 1 exists,

then Y 2 = Ul where U1 = lv2 for some squarefree integer l, and either

l = 1, l = 2, or l = p for some prime p ≡ 3 (mod 4).

Using this result, one can solve any Thue equation X2 − 2rXY 2−
sY 4 = 1 as follows. First, put D = r2 + s, and if D > 0 and not a square
(or otherwise the problem is trivial), compute εD = T + U

√
D, which is

the minimal solution to X2 −DY 2 = 1. Factor U into the form U = l · y2

with l squarefree, and then simply check whether any of U = U1, U2, Ul

are squares. To exhibit the usefulness of this result, Stroeker’s approach
breaks down in particular case r = −1, s = 2. Using our approach, we see
that D = 3, εD = 2 +

√
3, and the only squares are U1 = 1 and U2 = 4,

which shows that (X, Y ) = (1, 1) is the only positive integer solution to
X2 + 2XY 2 − 2Y 4 = 1.

4. On the equation X3 − dY 2 = ±1

In [Cohn91], Cohn investigated the solvability of the Diophantine
equation

x3 −Ny2 = ±1.

Improving upon previous work of Stroeker [Stroeker76], Cohn proved
the following theorem.
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Theorem 4.1. Let N denote a squarefree positive integer with no

prime factor of the form 3k + 1. Then the equation x3 − Ny2 = 1 has

no solutions in positive integers, and the equation x3 −Ny2 = −1 has no

solutions in positive integers, unless N ∈ {1, 2}, in which case (N,x, y) =
(1, 2, 3) and (N, x, y) = (2, 23, 78) are the only solutions.

The interesting case in this theorem arises when the respective irre-
ducible quadratic factors take on values of the form 3z2, for otherwise the
result is an immediate consequence of quadratic reciprocity. Cohn deals
with this case in a very clever manner by determining all of the integer
solutions to the respective equations

x2 + x + 1 = 3z2, x− 1 = 3Nw2

and
x2 − x + 1 = 3z2, x + 1 = 3Nw2,

which are equivalent respectively to

3N2w4 + 3Nw2 + 1 = z2

and
3N2w4 − 3Nw2 + 1 = z2.

We reformulate Cohn’s theorem in terms of these Diophantine equa-
tions as follows.

Theorem 4.2. If N is a squarefree integer not divisible by any prime

p ≡ 1 (mod 3), then the equation 3N2w4 +3Nw2 +1 = z2 has no positive

integer solutions (w, z), and the equation 3N2w4 − 3Nw2 + 1 = z2 has no

solutions in positive integers, unless N ∈ {1, 2}, in which case (N, w, z) =
(1, 1, 1) and (N, w, z) = (2, 2, 13) are the only solutions.

In [LucaWalsh01] Luca and the author proved a more general result
concerning integer points on a large class of elliptic curves, which includes
the particular curves considered by Cohn. In particular, using Theo-
rem 2.1, the following theorem was proved. If a positive integer n is of
the form n = ma2 for some squarefree positive integer m and an integer a,
we refer to m as the squarefree class of n, and denote it by m = 〈n〉.
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Theorem 4.3. Let d be a positive integer with d ≡ 3 (mod 4), and

let εd = T + U
√

d > 1 denote the minimal solution to X2− dY 2 = 1, with

the assumption that T is even. For a squarefree positive integer N which

is not divisible by any odd prime p with (−d/p) = 1, the Diophantine

equation

dN2w4 + dUNw2 + (T/2)2 = z2

has no solutions in positive integers (w, z), and the Diophantine equation

dN2w4 − dUNw2 + (T/2)2 = z2

has no solutions in positive integers (w, z), except only if N = 〈U〉, in

which case

(w, z) =

(√
U

N
, T/2

)

is the only solution, and N = 〈2U〉, in which case

(w, z) =

(
T

√
2U

N
, (T/2)(4T 2 − 3)

)

is the only solution.

We remark that the special case of d = 3 in this theorem is precisely
the case proved by Cohn. Also, if the value d in this theorem is prime,
then T is even, thereby removed this condition from the hypothesis given
in the theorem.

5. Near squares in linear recurrences

Let r, s, U0, U1 denote integers. The relation

Un+1 = rUn − sUn−1

defines a binary linear recurrence sequence {Un} for n ≥ 1. For a poly-
nomial P (x) of degree at least two with integer coefficients, Nemes and
Pethő described necessary conditions for the general equation

Un = P (x)
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to have infinitely many solutions in integers (n, x). In the particular case
P (x) = bx2, for b ≥ 1, precise results on the solutions of this equation have
been obtained by many individuals. In the more general case that P (x)
is an arbitrary quadratic polynomial, and the sequence in question is of
Lucas–Lehmer type, there exist methods to determine all solutions. The
method of Baker [Baker69] provides an explicit upper bound for the size
of solutions to Un = P (x). In [Tzanakis96], Tzanakis describes an algo-
rithmic approach to determine all solutions to Un = P (x). It is our interest
to determine families of such equations for which one can make explicit
statements of solvability. In the present paper we consider the particular
case that P (x) = cx2 − 1 for an even positive integer c, and for which the
linear recurrence sequence above is given by (r, s, U0, U1) = (2T, 1, 0, 1),
for some positive integer T > 1. Similar problems were considered by
Robbins in [Robbins81].

Let T > 1 denote a positive integer, and define α = T +
√

T 2 − 1. For
n ≥ 1, define sequences {Tn} and {Un} by

αn = Tn + Un

√
T 2 − 1.

Also, for i ≥ 1, define sequences {pi}, {qi} by

pi + qi

√
2 = (1 +

√
2 )i.

Employing a technique of Ljunggren’s in [Ljung36], developed further in
work of Cohn [Cohn98], together with Theorem 2.1, the following result
was proved in [Walsh03].

Theorem 5.1. (i) If (T, c) = (q2i+1, 2) for some i ≥ 1, then the

equation

Un = cx2 ± 1

has only the two positive integer solutions (n, x) = (1, 1), (3, p2i+1).

(ii) If (T, c) is any other pair of positive integers for which T > 1 and

c is even, then the equation

Un = cx2 ± 1

has only one solution in positive integers (n, x), and if a solution exists,

then n < c.
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6. Schäffer’s equation

É. Lucas [Lucas1877] studied the diophantine equation

y2 = 12 + 22 + · · ·+ x2,

and it was G. N. Watson [Watson1918] who later correctly proved that
the only positive integer solutions are x = y = 1 and x = 24, y = 70.
Schäffer [Schäffer56] furthered this work by studying the more general
equation

yq = 1k + 2k + · · ·+ xk.

The main result of this work was a proof that the only positive integers
(k, q > 1) for which this equation has infinitely many solutions are (k, q) ∈
{(1, 2), (3, 2), (3, 4), (5, 2)}.

Schäffer also made the following conjecture.

Conjecture 6.1. Let k and q > 1 be positive integers, with (k, q)
not in the above list. Then apart from the solution (x, y) = (24, 70) when

k = q = 2, the only solution is the trivial solution x = y = 1.

In recent years there have been numerous papers on this topic, most
notably by Béla Brindza (see [Brindza84] or [Brindza90] for example).
The interested reader may wish to refer to the notes at the end of Chap-
ter 10 in [ShoreyTijdeman86].

In a recent paper [BrindzaPintér2000], Brindza and Pintér proved
the following

Theorem 6.1. For k ≥ 2 even, the equation

y2 = 1k + 2k + · · ·+ (x− 1)k

has at most max{c1, 9k} solutions in integers x and y, where c1 is an

effectively computable absolute constant.

Although this theorem does not prove Schäffer’s conjecture, its proof
provides a methodology for finding all integer solutions to the equation
y2 = 1k + 2k + · · ·+ (x− 1)k for fixed even integers k. In particular, this
was the goal in [Pintér2001], wherein Pintér found all solutions to this
equation for k ∈ {2, 4, 6, 8, 10, 14}.
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Pintér’s approach is to reduce the problem of finding all integer solu-
tions to y2 = 1k + 2k + · · ·+ xk, for a fixed even integer k, to the problem
of determining all integer points on a small collection of elliptic curves of
the form Z3 − Z = aW 2, where a takes on finitely many values which
depending entirely on k. This can effectively be done using the techniques
in [Gebel94], but the problem that arises in this approach is the enor-
mous amount of time it can take to determine explicitly a basis for the
Mordell–Weil group of each curve.

An alternative approach is to represent each collection of elliptic curves
Z3−Z = aW 2, for a fixed value k, as a collection of elliptic curves written
in the form b2X4 − dY 2 = 1. It is straightforward to see that this can be
done, and that integer points are preserved by this transformation. Using
Theorem 2.1, one can then determine all integer points on each collection
of curves in a fairly straightforward manner by computing the minimal
solution to the Pell equation X2 − dY 2 = 1 for a number of values of d.
As a consequence of this reduction using Theorem 2.1, we improved upon
the aforementioned result of Pintér in [Jacobson03] as follows.

Theorem 6.2. For 2 ≤ k ≤ 58 and k even, the only positive integer

solution (x, y) to the equation y2 = 1k +2k + · · ·+xk is the trivial solution

(x, y) = (1, 1), except in the case k = 2, for which there is the solution

(x, y) = (24, 70).
Under the assumption of the Extended Riemann Hypothesis, the result

holds also for even values of k in the range 60 ≤ k ≤ 70.

We note that some more recent progress on Schäffer’s conjecture has
been made by Bennett, Győry, and Pintér in [BGP04], who have
shown that the conjecture is true in the case that k ≤ 11 and q arbitrary.
In [Pintér2004], Pintér has shown that the conjecture is true in the case
that k ≤ 58 is even and q arbitrary, and in [Pintér2004a], he has proved
that the conjecture holds in the case that k ≤ 61 is odd and q > 4 is even.
A survey paper by Győry and Pintér on this progress can be found
in [GP03].
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