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On polyslender context-free languages

By PÁL DÖMÖSI (Debrecen), CARLOS MARTIN-VIDE (Tarragona)
and ALEXANDRYU MATEESCU (Bucharest)

Abstract. A. Szilárd, S. Yu, K. Zhang, and J. Shallit showed that for
any positive integer k, a regular language is k-polyslender if and only if it is a finite
union of (k + 1)-multiple loop languages. M. Latteux and G. Thierrin and
later, independently, D. Raz proved that the family of polyslender context-free
languages is bounded. Polyslender context-free languages are also characterized
by L. Ilie, G. Rozenberg and A. Salomaa. In this paper, we continue this
line of research.

1. Introduction

Combinatorial properties of words and languages play an important
role in mathematics and thoretical computer science (see [1], [7], [10], [16],
etc.). M. Kunze, H. J. Shyr and G. Thierrin [8], and later, indepen-
dently, J. Shallit [13]–[15], and more later, also independently, G. Păun

and A. Salomaa [11] proved that slender regular and USL-languages co-
incide. A. Szilárd, S. Yu, K. Zhang, and J. Shallit [17] characterized
the k-polyslender regular languages as finite unions of (k+1)-multiple loop
languages. The next characterization of slender context-free languages was
proved by M. Latteux and G. Thierrin [9] and later, independently,
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L. Ilie [5] and D. Raz [12] showed that every slender context-free lan-
guage is UPL and vice versa. (It was also conjectured by G. Păun and
A. Salomaa [11].) The characterization of Parikh slender regular lan-
guages and Parikh slender context-free languages is given by J. Honkala

[3]. M. Latteux and G. Thierrin [9] and later, independently, D. Raz

[12] proved that the class of polyslender context-free languages is a (real)
subclass of bounded languages. The first characterization of polyslender
context-free languages is given by L. Ilie, G. Rozenberg and A. Salo-

maa [6]. In this paper we continue this line of research.

2. Preliminaries

A word (over Σ) is a finite sequence of elements of some finite non-
empty set Σ. We call the set Σ an alphabet, the elements of Σ letters. If
u and v are words over an alphabet Σ, then their catenation uv is also a
word over Σ. Especially, for every word u over Σ, uλ = λu = u, where λ

denotes the empty word. Given a word u, we define u0 = λ, un = un−1u,
n > 0, u∗ = {un : n ≥ 0} and u+ = u∗ \ {λ}.

The length |w| of a word w is the number of letters in w, where each
letter is counted as many times as it occurs. Thus |λ| = 0. By the free
monoid Σ∗ generated by Σ we mean the set of all words (including the
empty word λ) having catenation as multiplication. We set Σ+ = Σ∗ \{λ},
where the subsemigroup Σ+ of Σ∗ is said to be the free semigroup generated
by Σ. Subsets of Σ∗ are referred to as languages over Σ. Denote by |H|
the cardinality of H for every set H. A language L is said to be length
bounded by a function f : N → N if we have |{w ∈ L : |w| = n}| ≤ f(n).
Note that every language L ⊆ Σ∗ is length bounded by f(n) = |Σ|n. A
language that is length bounded by a polynomial of degree k is termed
k-polyslender. Thus, for a positive integer k, a language L is called k-
polyslender if the number of words of length n in L is of order O(nk).
Slender languages coincide with 0-polyslender languages. A language is
called polyslender iff it is k-polyslender for some k. A language of the form
L ⊆ w∗

1 . . . w∗
k is called k-bounded. In addition, a language is bounded iff

it is k-bounded for a positive integer k. A language L ⊆ Σ∗ is said to be
k-slender if |{w ∈ L : |w| = n}| ≤ k, for every n ≥ 0. A language is slender
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if it is k-slender for some positive integer k. A 1-slender language is called
a thin language. A language L is said to be a union of single loops (or, in
short, USL) if for some positive integer k and words ui, vi, wi, 1 ≤ i ≤ k,

L =
k⋃

i=1

uiv
∗
i wi. (∗)

L is called a union of paired loops (or UPL, in short) if for some positive
k and words ui, vi, wi, xi, yi, 1 ≤ i ≤ k,

L =
k⋃

i=1

{uiv
n
i wix

n
i yi | n ≥ 0}. (∗∗)

For a USL (or UPL) language L the smallest k such that (∗) (or (∗∗)) holds
is referred to as the USL-index (or UPL-index) of L. A USL language L

is said to be a disjoint union of single loops (DUSL, in short) if the sets in
the union (∗) are pairwise disjoint. In this case the smallest k such that
(∗) holds and the k sets are pairwise disjoint is referred to as the DUSL-
index of L. The notions of a disjoint union of paired loops (DUPL) and
DUPL-index are defined analogously considering (∗∗).

For slender regular languages, we have the following characterization,
first proved by M. Kunze, H. J. Shyr and G. Thierrin [8], and later,
independently, by J. Shallit [13]–[15], and more later, also independently,
by G. Păun and A. Salomaa [11] ([14] and [15] are an extended abstract
form and a revised form, respectively, of [13]).

Theorem 2.1. The next conditions, (i)–(iii), are equivalent for a lan-

guage L.

(i) L is regular and slender.

(ii) L is USL.

(iii) L is DUSL.

Moreover, if L is regular and slender, then the USL- and DUSL-indices of

L are effectively computable.

The following result is given by G. Păun and A. Salomaa [11].

Theorem 2.2. Every UPL language is DUPL, slender, linear and

unambiguous.
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The next characterization of slender context-free languages was proved
by M. Latteux and G. Thierrin [9] and later, independently, by L. Ilie

[5] and D. Raz [12]. It was also conjectured by G. Păun and A. Salo-

maa [11].

Theorem 2.3. Every slender context-free language is UPL.

The next characterization of polyslender languages by bounded lan-
guages is given by D. Raz [12].

Theorem 2.4. Every (k + 1)-bounded language is k-polyslender.

The next statement was first proved by M. Latteux and G. Thier-

rin [9] and later, independently, by D. Raz [12].

Theorem 2.5. Every polyslender context-free language is bounded.

We shall use the following simple observation.

Proposition 2.6. Let L be the union of the languages L1, . . . , Lk

(k ≥ 1). Then L is polyslender if and only if all of L1, . . . , Lk are polyslen-

der. In particular, L is slender if and only if all of L1, . . . , Lk are slender.

Following S. Ginsburg [2], for any pair of words x, y ∈ Σ∗ and Z ⊆ Σ∗

we put (x, y) � Z = {xnZyn : n ≥ 0}. The next result is from S. Gins-

burg [2].

Theorem 2.7. The family of bounded context-free languages is the

smallest family of languages containing all finite languages and closed with

respect to the following operations: finite union, finite product, (x, y) � Z,

where x and y are words.

Now we consider the following recursive definition. We say that a
language L ⊆ Σ∗ is a non-crossing 1-multiple paired loop language iff it is
of the form L = {uvnwxny : n ≥ 0} for some words u, v,w, x, y ∈ Σ∗.1

Inductively, for every pair k, � of positive integers, L is a non-crossing
(k + �)-multiple paired loop language iff one of the following conditions
holds:

1Observe that vx = λ is possible. Thus every singleton language is a non-crossing 1-
multiple paired loop language.
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(i) L = {uvnL′xny : n ≥ 0} for some non-crossing (k + �− 1)-multiple
paired loop language L′ and words u, v, x, y ∈ Σ∗;

(ii) L = L1L2, where L1 is a non-crossing k-multiple paired loop lan-
guage and L2 is a non-crossing �-multiple paired loop language.

We also say that a language is a non-crossing multiple paired loop
language if it is a non-crossing k-multiple paired loop language for some
nonnegative integer k. The non-crossing 1-multiple paired loop languages
are simply called paired loop languages, or in short, paired loops as before.2

Proposition 2.8. The family of non-crossing multiple paired loop

languages is the smallest family of languages containing all paired loop

languages and closed with respect to the following operations: finite prod-

uct, (x, y) � Z, where x and y are words.

L ⊆ Σ∗ with k ≥ 1 is called a k-multiple loop language iff there exist
u1, v1, . . . , uk, vk, uk+1 ∈ Σ∗ such that, L = u1v

∗
1 . . . ukv

∗
kuk+1. 1-multiple

loop languages are simply called single loop languages, or in short, single
loops as previously. The next result is given by A. Szilárd, S. Yu,

K. Zhang, J. Shallit [17].

Theorem 2.9. Given a nonnegative integer k, a regular language is

k-polyslender if and only if it is a finite disjoint union of (k + 1)-multiple

loop languages.

The following statement is obvious.

Proposition 2.10. Every finite union of k-multiple loop languages

can be given as a finite disjoint union of k-multiple loop languages.

Of course, Theorem 2.1 is a consequence of Theorem 2.9 and Propo-
sition 2.10.

Given a positive integer k, let Dk be the Dyck language of order k,
i.e., the context-free language over the alphabet ∆k = {[i , ]i : 1 ≤ i ≤ k}
generated by the grammar G = ({S},∆k, S, {S → λ} ∪ {S → [iS]iS : 1 ≤
i ≤ k}). Consider a word z ∈Dk with z = z1 · · · z2k, z1, . . . , z2k ∈∆k which
has exactly one occurrence of each bracket [i and ]i (for i = 1, 2, . . . k).

2It is clear that every non-crossing k-multiple loop language with k ≥ 0 is a non-crossing
(k + 1)-multiple loop language.
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Let Σ be an alphabet with Σ ∩∆k = ∅. A language D over Σ is called a
k-Dyck loop if

D = {hn1,··· ,nk
(w0z1w1z2w2 · · · z2kw2k) : ni ≥ 0, 1 ≤ i ≤ k},

where hn1,··· ,nk
: (Σ ∪∆k)� → Σ� is the homomorphism defined by x 
→ x

(x ∈ Σ), [i 
→ uni
i , and ]i 
→ vni

i (1 ≤ i ≤ k) for some fixed words ui, vi, wi ∈
Σ� and numbers ni (1 ≤ i ≤ k). A k-Dyck loop D is degenerate if, for
each i (1 ≤ i ≤ k), at most one of the words ui and vi is nonempty.

Observation 2.11. A language is a k-Dyck loop if and only if it is a

non-crossing k-multiple paired loop language. Moreover, a language is a

degenerate k-Dyck loop if and only if it is a k-multiple loop language.

The following characterization is given by L. Ilie, G. Rozenberg

and A. Salomaa [6].

Theorem 2.12. For any k ≥ 0, a context-free language L is k-

polyslender if and only if L equals a finite union of (k + 1)-Dyck loops.

As an immediate consequence of Theorem 2.12, the authors of the
above result obtain the following statement which is equivalent to Theo-
rem 2.9.

Theorem 2.13. For any k ≥ 0, a regular language L is k-polyslender

if and only if L equals a finite union of degenerate (k + 1)-Dyck loops.

We will use the next three results of S. Ginsburg [2].

Theorem 2.14. Each context-free language over one letter is a regular

language.

A language L is called commutative if uv = vu for every pair u, v ∈ L.

Lemma 2.15. A language L ⊆ Σ∗ is commutative if and only if there

exists a word w such that L ⊆ w∗.

Theorem 2.16. For each context-free grammar G = (V,Σ, P, S) and

variable X ∈ V let LX(G) = {u ∈ Σ∗ : X
∗⇒ uXv for some v ∈ Σ∗}, and

RX(G) = {v ∈ Σ∗ : X
∗⇒ uXv for some u ∈ Σ∗}. Let G be reduced. A

necessary and sufficient condition that L(G) �= ∅ is bounded is that LX(G)
and RX(G) both are commutative for each variable X ∈ V .
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The following result by N. J Fine and H. S. Wilf [1], [4] will also
be applied. (For a version of this statement see also H. J. Shyr [16].)

Theorem 2.17. Let u and v be nonempty words, and, p, q ≥ 0 inte-

gers. If up and vq contain a common prefix or suffix of length |u| + |v| −
gcd(|u|, |v|) (where gcd(|u|, |v|) denotes the greatest common divisor of |u|
and |v|) then u = wm and v = wn, for some word w and positive integers

m, n.

The following observation shows that there exists no analogous state-
ment of Proposition 2.10 for the finite union of non-crossing k-multiple
paired loop languages.

Observation 2.18. It is clear that {anbncm : m, n ≥ 0} ∪ {ambncn :
m, n ≥ 0} is a finite union of non-crossing 2-multiple paired loop languages

which cannot be given as a finite disjoint union of non-crossing k-multiple

paired loop languages for some k.

3. Results on bounded languages

The following statement is a consequence of the proof of Theorem 2.14
given in [2]. It also follows from the fact that the length set of a regular
language is ultimately periodic.

Lemma 3.1. Given a singleton alphabet {a}, every regular language

L ⊆ a∗ can be represented as a disjoint finite union of languages having

the form am(an)∗,m, n ≥ 0.

Proof. Using Theorem 2.1, we show only that every regular lan-
guage L ⊆ a∗ can be represented as a finite union of languages having
the form am(an)∗,m, n ≥ 0. For this statement, it is enough to prove
that L is a finite union of languages having the form am(an)∗,m, n ≥ 0
whenever L ∈ {am1(an1)∗ ∪ am2(an2)∗, am1(an1)∗am2(an2)∗, (am(an)∗)∗}
for appropriate non-negative integers m1, n1,m2, n2,m, n. Of course, the
case L = am1(an1)∗ ∪ am2(an2)∗ is trivial. Using the identity

am1(an1)∗am2(an2)∗ = am1+m2

(
n2−1⋃
i=1

ain1

n1−1⋃
j=1

ajn2
⋃

(an1+n2)∗
)

,
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we also have our statement for L ∈ {am1(an1)∗am2(an2)∗}. Finally, our
proposition trivially holds for L = (am(an)∗)∗. �

The next statement is a direct consequence of Theorem 2.9.

Theorem 3.2. Consider words x1, y1, . . . , xk, yk, xk+1 ∈ Σ∗, a regular

language L ⊆ x1y
∗
1 . . . xky

∗
kxk+1. Then L can be represented as a finite dis-

joint union of languages having the form x1y
m1
1 (yn1

1 )∗ . . . xky
mk
k (ynk

k )∗xk+1.

By Theorem 2.5, every polyslender context-free language is bounded.
Therefore, the polyslender regular languages are also bounded. On the
other side, it is clear that every language L with L ⊆ x1y

∗
1 . . . xk+1y

∗
k+1xk+2,

x1, y1, . . . , xk+1, yk+1, xk+2 ∈ Σ∗ is k-polyslender in consequence of
Theorem 2.4. Thus we can also get Theorem 2.9 by using Theorem 3.2,
Theorem 2.5, and Theorem 2.4.

Given a context-free grammar G = (V,Σ, S,H), put L(W ) = {w ∈
Σ∗ : W

∗⇒ w} for every sentence form W ∈ {V ∪ Σ}∗. We shall use the
following two lemmas.

Lemma 3.3. Given a reduced context-free grammar G = (V,Σ, P, S),
let L(G) be bounded. For every variables A,B ∈ V there exist words

w, z ∈ Σ∗ such that for every sentential forms W,Z,Wi, Zi,∈ (V ∪ Σ)∗,
i = 1, 2, 3, 4 we have the following statements.

(i) A
∗⇒ WAZ implies L(W ) ⊆ w∗, L(Z) ⊆ z∗

(ii) A
∗⇒ W1AZ1, A

∗⇒ W2BZ2, B
∗⇒ W3BZ3, B

∗⇒ W4AZ4 imply

L(W ∗
1 ), L((W2W

∗
3 W4)∗) ⊆ w∗, L(Z∗

1 ), L((Z4Z
∗
3Z2)∗) ⊆ z∗.

Proof. Theorem 2.16 and Lemma 2.15 imply directly (i). If W ∗
1 =

{λ} or (W2W
∗
3 W4)∗ = {λ} then we have (i) and (ii) immediately. Other-

wise, we can get (i) and (ii) by an inductive application of Theorem 2.17.
�

Lemma 3.4. Given a reduced context-free grammar G = (V,Σ, P, S),
let L(G) be bounded. For every variable A ∈ V , L(A) is a finite union of

languages of the form {(wi)∗(wj)nw′L(A′)z′(zk)n(z�)∗ : w′, z′ ∈ Σ∗, n ≥ 0,
A′ ∈ V , A′ ⇒WB′Z implies B′ �= A}.

Proof. Consider an arbitrary variable A ∈ V . By Lemma 3.3, L(A) is
a finite union of languages of the form {L(W )nw′L(B)z′(L(Z))n:w′, z′∈Σ∗,
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n ≥ 0} such that B ∈ V , L(W ) ⊆ w∗, L(Z) ⊆ z∗ for some w, z ∈ Σ∗,
and simultaneously, B

∗⇒ W ′′AZ ′′ implies w′L(W ′′) ⊆ w∗, L(Z ′′)z′ ⊆ z∗.
Therefore, we obtain that L(A) is a finite union of languages
{L(W )nw′L(A′)z′(L(Z))n:w′, z′∈Σ∗, n≥ 0} such that A′∈V , L(W )⊆w∗,
L(Z) ⊆ z∗ for some w, z ∈ Σ∗, and moreover, A′ ⇒ WB′Z implies B′ �= A.
On the other hand, L(W ) ⊆ w∗, L(Z) ⊆ z∗ are context-free languages.
Thus, by Theorem 2.14, they are regular languages. But then, using
Lemma 3.1, they are a (disjoint) finite union of languages of the form
(wi)∗wj , zk(z�)∗. �

Now we are ready to prove our main result.

Theorem 3.5. Every finite union
⋃m

i=1 Li of non-crossing k-multiple

paired loop languages L1, . . . , Lm is a (2k+1)m-bounded context-free lan-

guage. Conversely, every k-bounded context-free language can be repre-

sented as a finite union of non-crossing k-multiple paired loop languages.

Proof. It is clear that a finite union
⋃m

i=1 Li of non-crossing k-multi-
ple paired loop languages L1, . . . , Lm is (2k + 1)m-bounded. On the other
hand, it is easy to prove that a non-crossing multiple paired loop language
can be generated by a context-free grammar. Therefore, a finite union
of non-crossing multiple paired loop languages is a bounded context-free
language. Conversely, consider a k-bounded context-free language L and
a reduced context-free grammar G = (V,Σ, P, S) with L = L(G). By an
inductive application of Lemma 3.4 we conclude that L(S)(= L(G)) is a
finite union of non-crossing multiple paired loop languages. On the other
hand, given a k-bounded language L, every sublanguage of L is k-bounded
by definition. Therefore, L(G) is a finite union of non-crossing k-multiple
paired loop languages. (Of course, it is possible that L can be given as
a finite union of non-crossing �-multiple paired loop languages such that
� < k.) �

Of course, we can consider the multiple loop languages as special types
of non-crossing multiple loop languages. The following simple observation
shows that the above result cannot be strenghtened in general.

Observation 3.6. It is clear that every k-multiple loop language can

be considered as a (2k + 1)-bounded language. Moreover, a k-multiple

loop language can be found which is not 2k-bounded. (For example,
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(ab∗)ka, a, b ∈ Σ is such a language.) On the other hand, for every m there

are k-multiple loop languages L1, . . . , Lm such that
⋃m

i=1 Li is (k + 1)m-

bounded but it is not ((k + 1)m− 1)-bounded language. (For example, let

Li = (a(bic)∗)kd, a, b, c, d ∈ Σ, i = 1, . . . ,m. Then, using L =
⋃m

i=1 Li ⊆
(a∗(bc)∗)kd∗(a∗(b2c)∗)kd∗ . . . (a∗(bcm)∗)kd∗, L is (2k + 1)m-bounded but it

is not ((k + 1)m− 1)-bounded.)

4. Polyslender context-free languages

First we show the following

Proposition 4.1. Every non-crossing (k + 1)-multiple paired loop

language is k-polyslender.

Proof. It is clear that w1L1 . . . wmLmwm+1, w1, . . . , wm+1 ∈ Σ∗, L1,
. . . , Lm are k-polyslender if and only if L1 . . . Lm is k-poly-slender. There-
fore, using Theorem 2.4, it follows that all (k + 1)-multiple loop languages
are k-polyslender. On the other hand, by an easy computation we ob-
tain that {L1u

nL2v
nL3 : n ≥ 0, u, v ∈ Σ∗, uv �= λ, L1, L2, L3 ⊆ Σ∗} is

k-polyslender if and only if L1u
∗L2L3 and L1L2v

∗L3 are k-polyslender. �

The following statement is obvious.

Proposition 4.2. Given a pair of positive integers k, � with k < �,

let L be an �-multiple loop language (a non-crossing �-multiple paired loop

language). If L is a finite union of k-multiple loop languages (finite union

of non-crossing k-multiple paired loop languages) then L is a k-multiple

loop language (a non-crossing k-multiple paired loop language).

Proposition 4.3. Given a pair k, � of positive integers with k≤ �, ev-

ery k-poly-slender non-crossing �-multiple loop language is a non-crossing

(k + 1)-multiple loop language.

Proof. First we observe that for every positive integer i,
{L1u

nL2v
nL3 | n ≥ 0}, u, v ∈ Σ∗, L1, L2, L3 ⊆ Σ∗ is i-polyslender if and

only if L1(uv)∗L2L3 is i-polyslender. Therefore, to prove our statement, we
can restrict to k-polyslender �-multiple loop languages. But in consequence
of Theorem 2.9, a k-polyslender multiple loop language should be a finite
union of (k + 1)-multiple loop languages. �
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By our Observation 2.11, the next statement is essentially the same as
Theorem 2.12. Thus, by the proof of the next statement, we reach another
proof of Theorem 2.12 given by .

By Observation 2.11, Theorem 2.12 (given by L. Ilie, G. Rozenberg

and A. Salomaa [6]) can be written in the following form.

Theorem 4.4. A context-free language is k-polyslender if and only if

it is a finite union of non-crossing (k + 1)-multiple paired loop languages.

By our results, now we give a new proof of the above statement.

Proof. Non-crossing (k + 1)-multiple paired languages are obviously
context-free. In addition, Lemma 4.1 shows that non-crossing (k + 1)-
multiple paired loop languages are k-polyslender, and then their finite
unions also have this property. Conversely, let L be a k-polyslender context-
free language. Then applying Theorem 2.5, L is �-bounded for some �. In
consequence of Theorem 3.5 we have that L is a finite union of non-crossing
�-multiple paired loop languages. On the other hand, L is k-polyslender.
Thus every sub-language of L inherits this property. By Proposition 4.3
the proof is complete. �

5. Polyslender languages and trajectories

Firstly, we define the shuffle of words on trajectories.
Let V = {r, u} be the set of versors in the plane: r stands for the right

direction, whereas, u stands for the up direction. A trajectory is said to be
an element t, t ∈ V ∗.

Let Σ be an alphabet and let t be a trajectory, let d be a versor,
d ∈ V , let α, β be two (finite) words over Σ. The shuffle of α with β on
the trajectory dt, denoted α dt β, is recursively defined as follows:

if α = ax and β = by, where a, b ∈ Σ and x, y ∈ Σ∗, then:

ax dt by =

{
a(x t by), if d = r,

b(ax t y), if d = u.
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if α = ax and β = λ, where a ∈ Σ and x ∈ Σ∗, then:

ax dt λ =

{
a(x t λ), if d = r,

∅, if d = u.

if α = λ and β = by, where b ∈ Σ and y ∈ Σ∗, then:

λ dt by =

{
∅, if d = r,

b(λ t y), if d = u.

Finally,

λ t λ =

{
λ, if t = λ,

∅, otherwise.

Comment. Note that if |α| �= |t|r or |β| �= |t|u, then α t β = ∅.
The above operation is extended in the natural way to languages and

sets of trajectories.

Remark 5.1. Here we show that all customary operations for the par-
allel composition of words are particular cases of the operation of shuffle
on trajectories.

1. Let T be the set T = {r, u}∗. Observe that T = , the shuffle
operation. In order to prove this let Σ be an alphabet and consider
two words x and y, x, y ∈ Σ∗ Assume that w = x1y1x2y2 . . . xnyn is
an element of x y, where some xi, yj may be the empty word.

Note that in T there is the trajectory t = ri1uj1 . . . rinujn where
|xip | = ip and |yjq | = jq, 1 ≤ p.q ≤ n.

Moreover, note that x t y = w.

The converse is trivial.

2. Assume that T = r∗u∗. It follows that T = ·, the catenation operation.

Let Σ be an alphabet and consider two words x and y, x, y ∈ Σ∗.
Assume that |x| = p and |y| = q. Note that in T there is only one
trajectory t = rpuq and moreover x t y = xy. For the converse,
consider x and y, x, y ∈ Σ∗. and assume that |x| = p and |y| = q.
Note that xy is equal with x t y, where t = rpuq.

All the next equalities can be proved by similar methods.
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3. Define T = r∗u∗r∗ and note that T =←−, the insertion operation.

4. Let T be the set T = {riu2jri | i, j ≥ 0}. In this case T is the
balanced insertion operation, T =←−bal.

5. Consider T = (ru)∗ and observe that T = blit, the balanced literal
shuffle.

6. Assume that T = (ru)∗(r∗ ∪ u∗). Note that in this case T = lit,
the literal shuffle.

7. Let T be the set T = r∗u∗ ∪ u∗r∗. In this case T = �, i.e., it is the
bi-catenation operation.

8. Consider T = u∗r∗ and observe that T = •, the anti-catenation
operation.

We are now in position to state the following:

Theorem 5.2. If L1, L2 are polyslender languages and if T is a set

of trajectories such that T is polyslender, then L1 T L2 is a polyslender

language.

Proof. Assume that Li are polyslender with the polynomyals Pi,
i = 1, 2. Also assume that T is polyslender for the polynomial PT .

Note that for a trajectory t ∈ T , such that |t|r = k1 and |t|u = k2, then
L1 t L2 contains P1(k1)P2(k2) words of length k1 + k2. Hence, L1 T L2

contains P1(k1)P2(k2)PT (k1 + k2) words of length k1 + k2.
Therefore L1 T L2 is a polyslender Language with the polynomial

P1P2PT . �

From the above theorem we conclude the following:

Corollary 5.3. The family of polyslender languages is closed under:

catenation, bicatenation, literal shuffle, balanced insertion, anti-catenation

and insertion.
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